CITY OF PACIFICA

Wet Weather Equalization Basin Site Feasibility Evaluation FINAL REPORT

It high . I

August 2015

Wet Weather Equalization Basin Site Feasibility Evaluation Final Report

August 2015

Table of Contents

Chapter 1	Summary of Findings	.1-1
Chapter 2	Introduction	.2-1
Chapter 3	Potential Sites	.3-1
Chapter 4	Construction Methods	.4-1
4.1	Equalization Basin	.4-1
4.2	Pipelines	.4-3
4.3	Other Project Elements	.4-5
4.4	Schedule	.4-6
Chapter 5	Site Alternative Analysis	.5-1
5.1	Site Alternative 1A: Linda Mar Park-and-Ride	.5-4
5.2	Site Alternatives 2A and 2B: Skate Park Parking Lot	5-12
5.3	Site Alternatives 3A and 3B: Crespi Parking Lot	5-22
5.4	Site 4: Linda Mar Pump Station	5-31
Chapter 6	Findings and Recommendations	6-1
6.1	Site Findings	6-1
6.2	Evaluation and Comparison of Site Alternatives	.6-4
6.3	Recommended Site Alternatives	.6-6

List of Tables

Table 1-1: Site Scoring Matrix	1-3
Table 1-2: Site Evaluation Summary	1-6
Table 3-1: Site Name Updates	3-1
Table 3-2: Preliminary Site Analysis Recommendations	3-3
Table 5-1: Site Alternative 1A Infrastructure Dimensions and Rates	5-4
Table 5-2: Site Alternative 1A Soil Condition Based on Geotechnical Boring	5-7
Table 5-3: Total Project Costs for Site Alternative 1A	5-10
Table 5-4: Site Alternatives 2A and 2B Infrastructure Dimensions and Rates	5-12
Table 5-5: Site 2 Soil Condition Based on Geotechnical Boring	5-16
Table 5-6: Total Project Costs for Site Alternative 2A	5-18
Table 5-7: Total Project Costs for Site Alternative 2B	5-20
Table 5-8: Site Alternatives 3A and 3B Infrastructure Dimensions and Rates	5-22
Table 5-9: Total Project Costs for Site Alternative 3A	5-27
Table 5-10: Total Project Costs for Site Alternative 3B	5-29
Table 5-11: Site Alternative 4 Infrastructure Dimensions and Rates	5-31
Table 5-12: Site Alternative 4 Soil Condition Based on Geotechnical Boring	5-34
Table 5-13: Total Project Costs for Site Alternative 4	5-36
Table 6-1: Summary of Findings and Costs for Shortlisted Site Alternatives	6-2
Table 6-2: Description of Criteria and Scores Used in Comparison Matrix	6-4
Table 6-3: Site Priority Decision Matrix	6-6

List of Figures

Figure 1-1: Evaluated Site Locations Overview	1-2
Figure 3-1: Potential Site Location Overview	3-2
Figure 4-1: Cutter Soil Mixing Equipment	4-1
Figure 4-2: Plan View Excerpt of Cutter Soil Mixing Wall Panels	4-2
Figure 4-3: Plan View Section of Basin Wall Primary Components	4-2
Figure 4-4: Basin Section Showing Primary Elements	4-3
Figure 4-5: Interior Basin Components	4-6
Figure 4-6: Example Construction Sequence	4-6
Figure 5-1: Schematic of Typical Equalization Basin Site and Pipelines	5-1
Figure 5-2: Diameter-Depth Relationship for Equalization Basin	5-3
Figure 5-3: Potential Basin Location and Pipeline Alignment at Site Alternative 1A	5-5
Figure 5-4: Potential Basin Location and Pipeline Alignments at Site Alternatives 2A	and
2B	.5-13
Figure 5-5: Hydraulic Grade Line for Site Alternatives 2A and 2B: 2.1 mgd Discharge	to
LH5	.5-14
Figure 5-6: Alternate Basin Location at Skate Park Parking Lot	.5-15
Figure 5-7: Potential Basin Location and Pipeline Alignments at Site Alternatives 3A	and
3B	.5-23
Figure 5-8: Potential Basin Location and Pipeline Alignment at Site Alternative 4	.5-32

Attachments

Attachment A -	Preliminary Geotechnical Report
Attachment B -	Geotechnical Memorandum for Site A
Attachment C -	Limited Site Plan for Site A
Attachment D -	City Staff Schedule Estimates
Attachment E -	Site 1A Environmental Boring Test Results
Attachment F -	Surface Layout Figures for Site 1A, Site 2B, and Site 3B

List of Abbreviations

gpd	gallons per day
gpm	gallons per minute
mgd	million gallons per day
City	City of Pacifica
CSM	cutter soil mixing
HDD	horizontal directional drilling
MG	million gallons
Master Plan	City of Pacifica Collection System Master Plan (2011)
PTGAB	pilot tube guided auger boring
RWQCB	Regional Water Quality Control Board
SSO	sanitary sewer overflow

Chapter 1 Summary of Findings

This report presents the results and recommendations of a site feasibility evaluation for a wet weather equalization storage basin for the City of Pacifica (City). The report was prepared by RMC Water and Environment (RMC) under a contract amendment to the City's *Collection System Master Plan* completed in October 2011. The equalization basin is a key element of the program recommended in the *Master Plan* to eliminate storm-related sanitary sewer overflows (SSOs) in the City's wastewater collection system and reduce peak wet weather flows to the City's Calera Creek Water Recycling Plant. Based on the *Master Plan* findings, a 2.1 million gallon wet weather equalization basin located in the vicinity of the Linda Mar Pump Station was identified as the most viable alternative (in addition to other recommended sewer improvements) for meeting regulatory requirements for eliminating capacity-related SSOs.

Based on preliminary analyses, four potential sites, shown in Figure 1-1, were identified for detailed feasibility analyses. Variations in the siting of the basin on a given parcel, or in the routing of associated pipelines, resulted in six potential alternatives at these sites:

- Site 1 (formerly known as Site A): The park-and-ride parking lot near Linda Mar Blvd.
 - Site 1A on the west end of the parcel
- Site 2 (formerly known as Site B): Skate Park Parking Lot
 - o Site 2A with associated pipelines parallel to Highway 1
 - Site 2B with associated pipelines that avoid Highway 1
- Site 3 (formerly known as Site C): The Crespi Parking Lot
 - o Site 3A with associated pipelines parallel to Highway 1
 - o Site 3B with associated pipelines that avoid Highway 1
- Site 4 (formerly known as Site D): The Linda Mar Pump Station parking lot.

The matrix shown below in Table 1-1 quantifies how well each site meets the evaluation criteria used in the analysis and comparison of alternatives. (The evaluation criteria are described below and in Section 6 of this report.)

				Site Alternatives 1A 2A 2B 3A 3B 4 -1 0 0 1 1 1 1 -1 -1 0 -1 1 1 -1 -1 0 -1 0 1 2 2 1 1 2 0 0 0 1 2 -2 1 1 0 -1 -1 1 0 0 1 1 2 -2 1 1 0 -1 -1 -1 1 0 1 0 -1 -1 1 1 1 1 1 2 -2 -1 1 1 1 1 0 -2 1 -2 1 -2 0 -2 -2 2 2 2 1 1 -1 2 2<					
Criteria	Weighting Factor	Relative Importance	1A	2A	2B	3A	3B	4	
Long-term Impact to Residents and Local Amenities	4	12%	-1	0	0	1	1	1	
Construction Impact to Residents and Local Amenities	4	12%	1	-1	-1	0	-1	0	
Willing Landowner	4	12%	1	2	2	1	1	2	
Vulnerability to Sea Level Rise and Flooding	4	12%	0	0	0	1	2	-2	
Cost	4	12%	2	1	1	0	-1	-1	
Schedule*	4	12%	1	0	1	0	1	-2	
Compatibility with Existing and Planned Landuse	1	3%	-1	1	1	1	1	2	
Impact on City Revenue	2	6%	-1	0	0	1	1	0	
Permitting	3	9%	1	-2	1	-2	0	-2	
Exposure to Salt and Sand Impacts	1	3%	2	2	2	1	1	-1	
Geotechnical Considerations	2	6%	2	2	2	2	2	1	
Sum of Weighting Factors	33	100%							
Constructible			Yes	Yes	Yes	Yes	Yes	Yes	
Score			22	9	22	14	20	-11	
Tier			1	2	1	2	1	2	

Table 1-1: Site Scoring Matrix

* Schedule ratings based on input provided by City staff and included in Attachment D.

As can be seen in Table 1-1, the following alternatives are top ranked and should be considered the best alternatives from which the City Council can make a final recommendation:

• Site Alternative 1A (Linda Mar Blvd. Park & Ride Lot) – This alternative would have the minimum amount of associated pipeline work and would avoid Caltrans and Coastal Commission permitting requirements. Because the site is owned by Caltrans, it would involve purchasing the western end of the parcel; they are willing to subdivide the parcel and sell only this portion. The schedule and timeline for acquisition is considered to be on the order of 18 months at this time. This site is located next to an existing gas station that does not have double containment for its storage tanks. Based on environmental borings and analysis, Site 1A appears to have very low levels of hydrocarbon contamination in the groundwater that would be expected due to the proximity to the gas station. There are also concentrations of metals found in the groundwater sample that are above environmental screening levels. The groundwater would need to be treated to address the fuel contamination and metal concentrations prior to discharge. The soil samples indicate that the hydrocarbon and metals concentrations are below the total threshold concentration limit and can therefore be disposed of at a local Class 3 landfill. The equalization basin would be approximately 81 feet in inner diameter, 70 feet deep and would be within 20 feet of neighboring residential property lines.

Estimated capital cost: \$13.0 million.

• Site Alternative 2B (Skate Park Parking Lot) – This site is owned by the City and therefore would not require land purchase. Associated pipelines would be constructed through residential streets, but would avoid paralleling Highway 1. Caltrans and Coastal Commission permitting would not be needed for this alternative. It is assumed that the same groundwater treatment

needed for Site Alternative 1A would be needed for Site Alternative 2B. The equalization basin would be approximately 95 feet in inner diameter, 55 feet deep and would be within 45 feet of neighboring residential property lines. This site alternative has the lowest schedule risk because it avoids the need to purchase the parcel, and avoids the need for Caltrans and Coastal Commission permitting.

Estimated capital cost: \$15.4 million.

• Site Alternative 3B (Crespi Parking Lot) – This site would be furthest from neighboring residential property lines (approximately 350 to 400 feet), and therefore may raise less concerns with local residents. This site is owned by Caltrans and would require land purchase from Caltrans. Because of its close proximity to Highway 1, Coastal Commission permitting would probably be required. Although the expected permit requirements would be readily met by the envisioned basin, obtaining this permit could add 6 to 12 months to the project schedule. This alternative would route associated pipelines through residential streets, which would therefore avoid Highway 1 and the need for Caltrans permitting. It is assumed that the same groundwater treatment needed for Site Alternative 1A would be needed for Site Alternative 3B. The equalization basin would be approximately 100 feet in inner diameter and 51 feet deep and would be 350 to 400 feet to the nearest residential property line.

Estimated capital cost: \$18.3 million.

The other site alternatives scored lower than the above alternatives due to need for Coastal Commission permitting of the basin or influent pipeline, Caltrans permitting of pipelines parallel to, and crossing, Highway 1, vulnerability to flooding and sea level rise, or an estimated project schedule that does not meet the required regulatory timeframe.

In assessing the various alternatives, the following criteria were found to be the most important and therefore were given the heaviest weightings in Table 1-1 Site Scoring Matrix:

- Long-term Impact to Residents and Local Amenities This criterion focuses on the potential impacts, or perception of those impacts, to those residents, businesses, and facilities that are located near the site. Odor and noise nuisances near the basin should be minimal, in light of the design provisions (odor control, quiet submersible pumps, etc.), however, maximized separation of the facilities from neighboring land uses will lessen these concerns.
- Construction Impact to Residents and Local Amenities All of the evaluated sites are within parking lots of amenities that are used by various sectors of the public. This criterion considers the inconvenience to citizens whose use of those amenities would be impacted by construction and loss of parking during construction. Also, although the construction methods considered in this report would not structurally impact nearby residences, there remains a risk that unsubstantiated claims could be made at sites that are in close proximity to structures and amenities.
- Willing Landowner It is preferable to locate the basin on a parcel either owned by the City or with a landowner willing to sell. Without a landowner willing to sell the basin parcel to the City, the difficulty of obtaining the parcel could be a fatal flaw of the site.

• Vulnerability to Sea Level Rise and Flooding – Sea level is anticipated to increase on the order of two feet over the lifetime of the equalization basin. Protecting the capital investment made in the basin is a primary concern. Site 4 (at Linda Mar Pump Station) is the only site of the four located on the ocean-side of Highway 1. It is assumed that inland locations would provide more protection from sea level rise and erosion than would be afforded by a site closer to the ocean. For this reason, sites east of Highway 1 are preferred.

The City also prefers to have use of the facility during flood events to help reduce the potential for sewer surcharging and contamination. Sites that are less prone to flooding or could accommodate a design to remove the basin from a floodplain are preferable to those sites that are more likely to flood.

- Cost The equalization basin and associated facilities are significant capital investments for the City. Therefore, lower cost alternatives are preferred, assuming benefits, impacts and risks are equal among the alternatives.
- Schedule The Regional Water Quality Control Board (RWQCB) has imposed a Cease and Desist Order with a deadline of December 31, 2018 to implement measures to eliminate capacity related SSOs. Site alternatives where construction is scheduled to finish ahead of that deadline are considered to be more viable than site alternatives that would not meet the deadline.
- Permitting Alternatives that require Caltrans and/or Coastal Commission permitting would result in longer project schedules. The probable permit requirements could be readily met by the envisioned basin, but the time and effort to obtain these permits could add 6 to 12 months to the project schedule.

Other criteria used in the analyses included compatibility with existing and planned land use, impact on City revenue, exposure to salt and sand impacts, and geotechnical considerations.

All of the alternatives are constructible and were developed with the guidance of geotechnical and structural engineers, as well as civil and hydraulic engineers. Three geotechnical borings were drilled on, or in the vicinity of the sites, two to a depth of approximately 75 feet and one to a depth of approximately 100 feet. These borings provide an indication of soil characteristics and stratigraphy that would be encountered during construction and which would have to be accommodated in design. The target depths for the borings were based on the approximate basin depths and assumed basin diameters at the given sites. The results of these borings indicate that soil conditions should be able to support the proposed basins at the sites listed above.

A summary comparison of the site alternatives discussed above are presented in Table 1-2 Site Evaluation Summary.

Item	Site 1A	Site 2A	Site 2B	Site 3A	Site 3B	Site 4		
Location	Linda Mar Blvd. Park and Ride Lot – West end of parcel	Skate Park Parking Lot with pipelines crossing and parallel to Hwy 1	Skate Park Parking Lot with pipeline alignments that avoid Hwy 1	Crespi Parking Lot with pipelines crossing and parallel to Hwy 1	Crespi Parking Lot with Alternate Pipeline Alignment	Linda Mar Pump Station Parking Lot		
Principal Advantage(s)	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively close to the diversion point and very close to the discharge point, reducing pipeline installation cost and impacts. New pipelines would not need to cross Highway 1. Least impact to existing use of all of the sites during construction due to total area available for parking and bus operation 	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. 	 Inland of Highway 1, so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. New pipelines would not need to cross Highway 1. 	 Inland of Highway 1, so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Potentially improved revenue generation due to avoided lease cost. 	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Potentially improved revenue generation due to avoided lease cost. New pipelines would not need to cross Highway 1. 	 Locates basin on same site as Linda Mar Pump Station. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Relatively close to diversion point, reducing pipeline installation costs and impacts. 		
Principal Disadvantage(s)	 Smaller site which may increase cost due to inconvenience to contractor. Close to privately owned structures and residences increasing the chance of negative perception and claims. General plan designation as mixed use and potential loss of revenue due to limited future site use. 	 Smaller site which may increase cost due to inconvenience to contractor. Close to privately owned structures and residences increasing the chance of negative perception and claims. Relatively far from the diversion point, increasing pipeline installation costs and impacts. Loss of free Community Center parking during construction. 	 Smaller site which may increase cost due to inconvenience to contractor. Relatively far from the diversion point, increasing pipeline installation costs and impacts. Loss of free Community Center parking during construction. 	 Relatively far from the diversion point, increasing pipeline installation costs and impacts. Most impact to existing use of all of the sites during construction because of the multiple amenities that are associated with this parking lot and the relatively high usage. 	 Relatively far from the diversion point, increasing pipeline installation costs and impacts. Most impact to existing use of all of the sites during construction because of the multiple amenities that are associated with this parking lot and the relatively high usage. 	 West of Highway 1, exposing basin to the effects of sea level rise and putting the basin within the Coastal Commission review zone. Sea level rise and coastal erosion could lead to early replacement of basin. Flood protection for this site may introduce additional project scrutiny from the Coastal Commission. Closest site to shoreline so facilities are the most exposed to ocean impacts such as salt and sand. 		
Site Ownership	Caltrans	City	City	Caltrans	Caltrans	City		
Owner Willing to Sell?	• Willing to subdivide parcel and sell west end to City.	• Not applicable as this property is City-owned.	• Not applicable as this property is City-owned.	 Yes, conditional on determination of stewardship of gifts and historic markers. 	 Yes, conditional on determination of stewardship of gifts and historic markers. 	• Not applicable as this property is City-owned.		
Permitting	 Avoids Caltrans and Coastal Commission permitting 	 Permit from Caltrans required for Highway 1 crossing. Coordination and possible permit from the Coastal Commission for diversion pipeline. 	 Avoids Caltrans and Coastal Commission permitting 	 Permit from Caltrans required for Highway 1 crossing. Coordination and possible permit from the Coastal Commission for diversion pipeline and due to visibility of site from Highway 1. 	 Could require Coastal Commission permitting because site is readily visible from Highway 1. 	 Basin would require review and likely permitting from the Coastal Commission for basin, pipelines, and associated facilities. 		

Table 1-2: Site Evaluation Summary

Item	Site 1A	Site 2A	Site 2B	Site 3A	Site 3B	Site 4
Construction Completion Date ^a	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 12/31/2018 0 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 12/31/2018 0 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2019 6 months after regulatory requirement
Other Considerations	 This site is relatively close to existing and past gas stations, increasing the risk for soil contamination. This site has a joint use as a bus station that may need to be relocated during construction based on final siting. Unknown timeframe for acquisition. 	 This site would require construction under and next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. Unknown timeframe for acquisition. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. Unknown timeframe for acquisition. 	 This site may require additional geotechnical work to prepare the ground for construction. Basin requires more than one day to empty due to current sewer capacity restrictions.
Basin Dimensions (internal)	81 ft diam x 70 ft depth	95 ft diam x 55 ft depth	95 ft diam x 55 ft depth	100 ft diam x 52 ft depth	100 ft diam x 51 ft depth	100 ft diam x 51 ft depth
Basin Cost	\$3.4M	\$3.7M	\$3.7M	\$3.8M	\$3.8M	\$3.8M
Associated Improvements Cost	\$2.1M	\$4.0M	\$4.0M	\$4.0M	\$4.2M	\$2.0M
Professional Services and Contractor Costs	\$2.9M	\$4.0M	\$4.0M	\$4.0M	\$4.1M	\$3.1M
Contingency	\$2.1M	\$2.9M	\$2.9M	\$3.0M	\$3.0M	\$2.2M
Land and Replacement Costs	\$1.8M	\$0	\$0	\$2.2M	\$2.2M	\$6.0M ^b
Estimated Total Project Cost, in 2013\$	\$12.3M	\$14.5M	\$14.6M	\$16.9M	\$17.3M	\$17.1M
Estimated Total Project Cost in 2016\$ ^e	\$13.0M	\$15.3M	\$15.4M	\$17.9M	\$18.3M	\$18.1M

Footnotes:

^a See Attachment D for additional detail regarding project schedule input provided by City Staff.

^b Cost reflects estimated abandonment and replacement cost due to sea level rise at this location.

^c Estimated total project cost may not reflect sum of above components due to rounding errors.

^d Costs reflect the same unit costs as originally estimated in 2013 for previous draft versions of this report.

^eCosts in 2016 \$ reflect inflation escalation to a presumed mid-point of construction of June 2016

Chapter 2 Introduction

The City of Pacifica prepared a *Collection System Master Plan* (RMC, October 2011) that described the development and use of a hydraulic model of the City's wastewater collection system to evaluate system capacity and identify deficiencies. The Master Plan also included evaluation of multiple alternatives to provide the capacity improvements needed. The Capital Improvement Plan associated with the City's preferred capacity assurance alternative included the following elements:

- Twelve sewer improvement projects totaling approximately 11,000 feet of new or upsized sewer pipelines;
- Increase in capacity of Linda Mar Pump Station by addition of a fourth pump; and
- Wet weather equalization basin.

The wet weather equalization basin would reduce the impacts of collection system inflow and infiltration on the Linda Mar Pump Station and force main, as well as at the Calera Creek Water Recycling Plant, preventing the need for extensive collection system rehabilitation or a more significant retrofit at or replacement of the pump station and force main and potential need to increase the peak hydraulic capacity of the plant. Based on the 10-year design storm established in the *Master Plan*, the basin capacity should be approximately 2.1 million gallons. In addition to the basin, supporting facilities and appurtenances include a gravity diversion pipeline to the basin, a pump station and force main from the tank back to the existing collection system, power generator, odor control, and basin wash down equipment.

The *Master Plan* identifies a location on Linda Mar Blvd. as the potential location for the proposed equalization basin. Rather than move immediately to design based on the *Master Plan*, the City chose to perform this evaluation in order to:

- Identify additional sites beyond the *Master Plan* site;
- Identify sites for consideration as the basis of design;
- Refine the cost estimate for the preferred basin; and
- Provide an increased level of confidence that construction of the basin at the preferred site is feasible.

This report summarizes the analysis performed to achieve the above goals and the results of that analysis. Additionally, this report provides a recommendation for potential preferred sites based on the information available at this time. Work performed for this report includes identification of alternative sites, a screening of those sites for further analysis, review of existing and development of new geotechnical information, analysis of hydraulic parameters, identification of feasible construction methods, development and application of evaluation criteria, and estimation of project costs. Selection of a single preferred site to move forward into the design will be decided by the City Council.

After introducing the sites to be evaluated, this report describes the recommended construction methods and project elements that should be included in the design. Based on those elements and methods, each site is evaluated with respect to several criteria. The results of those evaluations are then compiled to recommend sites for consideration for further evaluation and design.

Chapter 3 Potential Sites

The City and RMC identified the following nine potential site alternatives for the equalization basin:

- Site 1A: West End of Linda Mar Park-and-Ride
- Site 1B: East End of Linda Mar Park-and-Ride
- Site 2A: Skate Park Parking Lot (with pipelines that cross and parallel Highway 1)
- Site 2B: Skate Park Parking Lot (with pipelines that avoid Highway 1)
- Site 3A: Crespi Parking Lot (with pipelines that cross and parallel Highway 1)
- Site 3B: Crespi Parking Lot with (pipelines that avoid Highway 1)
- Site 3C: Crespi Parking Lot Open Space
- Site 4: Linda Mar Pump Station
- Site 5: Linda Mar Beach Parking Lot

These site alternatives were selected based on their public ownership (owned either by the City or Caltrans), proximity to the Linda Mar Pump Station, and their size being large enough to accommodate the basin. Figure 3-1 shows the locations of the basin sites associated with these nine site alternatives. Please note that during the course of this evaluation the sites were renamed as shown in Table 3-1 below. The body of this report uses the new site names whereas the attachments may use the earlier site names.

New Site Name	Prior Site Name
Site 1	Site A
Site 2	Site B
Site 3	Site C
Site 4	Site D

Table 3-1: Site Name Updates

A high level review of these nine site alternatives reveals that there are no readily apparent characteristics that would indicate a fatal flaw for the sites, with the exception of Site 1B. While this report was being written, Caltrans, the owner of this parcel, indicated that they were no longer willing to sell the eastern end of the parcel. In light of this recent development, Site 1B is no longer considered feasible and the analysis of this site is not presented in this report. Caltrans is willing to split the parcel and sell the western end; therefore Site 1A is considered viable and is discussed in this report.

To help differentiate the sites and to select a subset for further analysis, two non-physical characteristics, i.e. property ownership and Coastal Commission permitting, were identified as primary selection characteristics. Should Caltrans be unwilling to sell the property, or the Coastal Commission raise significant objections/conditions, the site could be fatally flawed.

As shown in Table 3-2, six of the original nine site alternatives were shortlisted for further analysis. Further discussions with Caltrans and the Coastal Commission regarding the sites are summarized and evaluated in Chapters 5 and 6.

Figure 3-1: Potential Site Location Overview

Site Alternatives	Site Owner	Basin Within Coastal Commission Zone	Pipelines within Coastal Commission Zone	Shortlist for Further Analysis?
1A	Caltrans	No	No	Yes, Caltrans willing to sell western end of parcel
1B	Caltrans	No	No	No, Caltrans not willing to sell eastern end of parcel
2A	City	No	Yes	Yes
2B	City	No	No	Yes
ЗA	Caltrans	Probably yes, because readily visible from Highway 1	Yes	Yes
3В	Caltrans	Probably yes, because readily visible from Highway 1	No	Yes
3C	Caltrans	Probably, yes because readily visible from Highway 1 and would probably require extensive mitigation measures due to environmental concerns	Yes	No (Has no advantage over Site 3A and in a potentially sensitive environmental area)
4	City	Yes	Yes	Yes
5	City	Yes	Yes	No (Has no advantage over Site 4 and further from the Linda Mar Pump Station)

The six shortlisted site alternatives provide a selection of City and Caltrans properties within, and outside of, the Coastal Commission area of jurisdiction.

Chapter 4 Construction Methods

The following recommendations for construction methods reflect consideration of the proposed basin shapes, subsurface conditions, and construction feasibility. Subsurface conditions, including the results of several borings, are summarized in Attachment B and Attachment C (note that these attachments utilize an outdated naming convention for the basin sites). Details regarding basin size, pipeline sizes and lengths, and return pumping capacity are presented in Chapter 5. The construction methods and project elements described in this chapter apply to all sites.

4.1 Equalization Basin

The primary construction method for the equalization basin recommended for all four of the sites is called the cutter soil mixing (CSM) method. This method of construction is advantageous for deep excavations in poor soils and in close proximity to other structures.

CSM involves creating a series of vertical interlocking, waterproof panels for the walls of the basin that do not require formwork or abandonment of non-structural elements, such as sheet piles. It provides a higher level of confidence in placement of the panels than other shaft or basin construction methods. This reduces risk of structural defects (and corresponding loss of hoop compression strength) or loss of seal between panels. Should the cutter start to drift as it is lowered, an operator can readjust the location and direction of the equipment. Given the volume of storage and structural depth needed for this project (on the order of 60-100 feet), the resultant basin structure needs to be circular in shape so that the walls can be designed as compression hoops.

CSM equipment consists of a dual-wheel cutting head attached to a Kelly bar drilling rig for placement and transportation. Figure 4-1 shows an example of cutting head and rig (photo from the equipment manufacturer Bauer). Water, and sometimes bentonite, is added as the cutting head is lowered into the ground to keep the soil fluidized. After reaching the design panel depth, cement grout is pumped to the cutting head and mixed with the soil as the equipment is removed. Panels are dug in alternating spaces, as shown in Figure 4-2. This creates a slurry-type wall which, when interlocked with adjoining panels, hardens to create a solid wall.

Figure 4-1: Cutter Soil Mixing Equipment

Figure 4-2: Plan View Excerpt of Cutter Soil Mixing Wall Panels

After completion of the circular basin wall, general excavation within the basin begins. After excavating the basin by approximately six to eight feet, welded steel rebar is dowelled into the slurry panels. Shotcrete is applied as the structural component of the basin and to create the interior of the basin wall. The shotcrete can be finished like normal concrete to create a smooth surface to facilitate washdown. Figure 4-3 shows the basin wall elements described in this section. After completion of the shotcrete wall and installation of hangers and anchors for other appurtenances, such as a walkway, valve and piping, or blowers, the excavation continues in stages of six to eight feet until the full depth of the basin is reached.

Figure 4-3: Plan View Section of Basin Wall Primary Components

At the bottom of the basin, a concrete plug is poured monolithically to create the basin bottom and to create a counterweight to the hydrostatic uplift force that the basin will encounter. The concrete plug is held in place by keying it into the bottom of the shotcrete wall.

The land use at each of the four locations under consideration in this study is a parking lot. After the basin sides and bottom are compete, the existing parking lot can be restored by pouring a concrete deck over girders sized to support the existing and planned future traffic loads. Should other future uses be defined at the time of design, it would be possible to design the deck and girders to support higher loads.

8" Cast-in-Place Concrete Deck Maximum \ Level Cast-in-Place Cutter Soil Mix (CSM) AASHTO Type IV **Concrete Bottom** Prestressed Concrete Girders, 8'-0" OC TYP 12" Shotcrete, Smooth Finish Storage

Figure 4-4 consists of a graphic with the described basin elements.

Secant pile construction was considered initially but is not recommended for basin construction. Secant piles are similar to the CSM panels except they are drilled, overlapping columns, usually with a steel rebar cage in every second pile. These are not recommended due to the higher risk of the piles being out of alignment at depth. Misaligned piles could create issues with:

- Maintaining the cylindrical shape critical for beneficial compression. Since the piles are the structural element in secant pile construction, misalignment rapidly reduces the benefits of the circular construction. The proposed method relies on the interior shotcrete as the structural element of the basin, allowing better control in maintaining the roundness of the basin.
- Creating a waterproof barrier. Water seepage between misaligned piles could be an issue, particularly at the bottom of the basin where the hydrostatic pressure is anticipated to be the greatest and the separation of the columns would be the most exaggerated. As described above, CSM allows greater control in placement and alignment of the panels.

4.2 Pipelines

Two pipelines will need to be installed for operation of the equalization basin, regardless of location, namely a gravity influent pipeline and a force main effluent pipeline. Subsurface conditions and groundwater level, particularly when the pipeline is close to the ocean, can drive selection of an installation method. Material choice for the pipelines is influenced by construction method, anticipated settling, pipe performance requirements, and cost.

Figure 4-4: Basin Section Showing Primary Elements

The gravity flow influent line will be relatively deep since, for most alternatives, it diverts flow from the existing gravity collection system just upstream of the Linda Mar Pump Station, the hydraulic low point of the local system. In the case of Site Alternatives 1A, 2B, and 3B, the diversion can occur further upstream in the collection system.

Additional geotechnical and utility information will be developed in future phases of the project. This more detailed information will allow optimization of the pipeline installation methods, alignments, and costs. Based on currently available geotechnical information, it appears that the pipeline will start very close to the groundwater surface and layers of cohesionless sand. As the pipeline extends further away from the diversion point it will likely drop below the groundwater table and into cohesionless sand. Below is a brief summary of the various methods that were considered for these conditions.

- **Open Cut Installation**. It appears that this installation method would require significant dewatering and/or installation of sheet piles along both sides of the trench to prevent the trench from filling with water and collapsing on itself. This method is not anticipated to be used except for a short distance near the flow diversion points for Site Alternative 2A or Site Alternative 3A due to the depth of the pipelines and proximity to the ocean. This method is anticipated to be used at Site Alternative 1A, Site Alternative 2B, and Site Alternative 3B where the pipelines are relatively shallow and the pipeline alignments are further inland. This method is also anticipated to be used at Site Alternative 4, where the basin is located close enough to the pump station to make open cut work more cost efficient than tunneling methods. Selection of this installation method during the design phase will require confirmation of depth to groundwater and confirmation of soil conditions along the finalized pipeline plan and profile.
- Pilot Tube Guided Auger Boring. Pilot tube guided auger boring (PTGAB) relies on sight lines to confirm the line and grade of pipe segments between jacking and receiving pits. Since pipelines installed using PTGAB can have grades comparable to those installed by open cut methods, the pipes can be installed at a relatively flat grade compared to horizontal directional drilling. This method is has been applied on other projects where the hydrostatic groundwater levels are less than ten feet above the pipe. PTGAB is the basis of the pipe installation cost estimate elements for Site Alternatives 2A and 3Aof this study, but additional study during the design phase of the project will be necessary to confirm the applicability of this method.
- **Microtunneling**. Microtunneling is a trenchless method that is technically feasible based on the known geotechnical information. However, it is more expensive than other alternatives while having a similar minimal surface impact as PTGAB.
- Horizontal Directional Drilling. Horizontal directional drilling (HDD) has the smallest surface footprint compared to other pipeline installation alternatives described in this section since jacking and receiving pits are not needed. It is also relatively inexpensive for normal applications of the installation method. Gravity pipelines to basins are not the typical application of HDD however. Due to the need for steeper gradients on gravity lines (based on the methods guidance system), HDD would lead to deeper borings than other methods. Should it ever be necessary to expose the pipeline for maintenance or inspection, the deeper pipeline would make the excavation very expensive. The steep gradient and long distances (leading to large hydraulic head) also may lead to special construction requirements to control the bentonite used to lubricate the equipment and stabilize the boring. These and some other considerations, such as construction staging for pipeline lay length and bend radius, make other pipeline installation methods more attractive in this application than HDD.

The force main effluent pipeline will be shallower than the gravity pipeline. It is therefore assumed that an open cut method of installation would be feasible for the force main. The force main alignments shown in Chapter 5 do not cross Highway 1, which would have likely required a trenchless method.

4.3 Other Project Elements

Other project elements, as described below, will be constructed in, around, or near to the basin or pipelines.

- **Pumps**. It is assumed that the equalization basin will be emptied using submersible pumps. The pump will be located in a sump at the lowest point in the basin floor. Discharge piping, power cables, and instrumentation wiring will be mounted vertically to the side of the wall. A second pump will also be included for backup capacity. Pumps can be removed by portable hoist from the basin via a hatch at ground level.
- Electrical Controls and Instrumentation. Electrical controls will be located in a small building at ground level near the basin. Monitoring equipment, such as gas monitors, water level indicators, pump status, flow monitors, etc. will be located as appropriate. The data collection and logic center will also be located in the small structure. Operation of the basin system would occur within this structure.
- Odor Control Odor control can be achieved through either a soil bed filter or a carbon scrubber. The soil bed filter consists of a perforated pipe network below a bed of organic material, often wood or bark chips. The carbon scrubber consists of an engineered system using cartridges of granular activated carbon or some other media. For purposes of this report, it is assumed that the soil bed filter will be used, primarily because it is more conservative from a project footprint perspective. For the volume associated with the empty basin, approximately 2,025 square feet (e.g. 45 feet x 45 feet) of bed surface area are required, whereas the carbon scrubber system is much more compact. (The selection of soil bed filter vs. carbon scrubber would be made in final design.)
- **Washdown System**. Tipping troughs are recommended for washdown of the basin walls and floor. The water dumped from the troughs will sluice waste into the sump. The troughs, tipping motors and actuators, and the water system to fill the troughs will be mounted on the walls of the basin.
- Ventilation. Build-up of explosive and corrosive gasses will need to be avoided. Also, ventilation will be required to allow maintenance and operations staff to access the basin interior. To achieve both of these objectives, ventilation will be provided by a fan with a duct to the bottom of the basin and an exhaust fan pulling air out of the basin and into the odor control system. The ventilation equipment will be mounted on the walls with access provided by a walkway. The mechanical equipment can be removed by portable hoist from the basin via a hatch at ground level.
- **Valves and Piping**. Valves and piping will be located on the walls of the basin and accessible from the walkway wherever possible.

- **Walkway**. The walkway will be supported on the walls of the basin and designed to provide maintenance access to equipment and for visual inspection.
- **Diversion Manhole**. Diversion to the equalization basin will occur passively due to rising water surfaces as the existing collection system approaches its capacity. For this diversion to occur, a new manhole will be constructed at each diversion point that includes a weir overflow to the diversion pipeline.

Figure 4-5 shows schematically the interior features of the basin described above. A schematic of features exterior to the equalization basin is shown in Figure 5-1.

Figure 4-5: Interior Basin Components

4.4 Schedule

A precise schedule for construction will be developed during the design phase of the project, but it is expected that overall construction will take approximately sixteen months. Figure 4-6 shows an example of the construction sequencing that could be used.

	Month															
Construction Element	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mobilization & Site Prep																
Cutter Soil Mix Wall																
Excavation, Rebar, and Shotcrete Placement																
Concrete Base																
Concrete Deck and Girders																
Diversion Pipeline																
Discharge Pipeline																
Electrical and Instrumentation																
Mechanical																
Testing and Startup																

Figure 4-6: Example Construction Sequence

Chapter 5 Site Alternative Analysis

Site Alternatives 1A, 2A, 2B, 3A, 3B, and 4 are evaluated in this chapter. All of these alternatives have the same hydraulic schematic, which is shown in Figure 5-1. As shown in that figure the hydraulic elements include:

- The diversion from the existing collection system upstream of the Linda Mar Pump Station;
- A gravity diversion pipeline between the diversion point and the equalization basin;
- An equalization basin site with the components exterior to the basin that were described in Chapter 4; and
- A force main leading back to an existing gravity sewer.

Figure 5-1: Schematic of Typical Equalization Basin Site and Pipelines

For each site, the following information is presented in the following sections:

- Site Introduction This section includes a description of the basin location, pipeline alignments, estimated schedule for construction completion, and some site specific details such as relative location to the coastline and dimensions.
- Size and Suitability This section includes discussion regarding the size of the site and its existing and planned land use. As shown in Figure 5-2, the basin depth is parabolically related to the diameter of the basin. It is preferable to find a balance between width and depth so as to reduce project footprint without making the basin unnecessarily deep. It is also preferable to locate the basin where it is compatible with existing and future land use. Impact to City revenue is assessed in this section.

- Adjacent Land Uses The surroundings of the potential basin should also be considered when evaluating a basin site. It is preferable to locate the basin away from residences and private commercial areas due to both the perception of the project and the potential for nuisance claims. It is also preferable to locate the basin where there will be fewer construction impacts on the public.
- **Parcel Ownership** As described in another chapter, it is critical that the basin be located on a parcel owned by an individual or organization willing to sell the necessary land to the City. This section includes some discussion about the current ownership status of the four sites.
- **Geotechnical Considerations** A brief summary of the site specific information available for the basin site is presented in this section.
- **Pipeline Connections** This section includes discussion about the relative complexity of the gravity and pressure pipelines that would be needed for operation of the basin at a given site, as well as a description of how flow would be returned to the sewer after a storage event.
- **Coastal Commission Jurisdiction** The Coastal Commission permitting process has the potential to impede the project timeline and increase the cost of the project through permit requirements. Per Coastal Commission staff, the jurisdictional boundary of the Coastal Commission in this area is Highway 1. Therefore, work east of Highway 1 would be outside of the Coastal Commission zone. However, the Coastal Commission often exerts its jurisdiction east of the highway if the project is readily visible from the highway. Initial, informal discussions with the Coastal Commission staff have suggested that permitting requirements for the basin would be relatively minor should it be located west of Highway 1, however it can be a lengthy process to obtain this permit. Permit conditions may consist of restrictions on the operations building and construction best management practices. Without formal consultation, however, it is unclear what role the Coastal Commission would have in shaping the design of the basin, its construction, and its operation. We believe it is in the City's best interest to continue to endeavor to engage the Coastal Commission formally.
- Ocean Impacts Proximity to the ocean impacts site selection in two ways. Most importantly, sea level rise will impact facilities not protected against coastal erosion. Latest projections for global sea level rise are on the order of two feet over the next fifty years (Advancing the Science of Climate Change, Board on Atmospheric Sciences and Climate, 2010, viewed at http://www.nap.edu/openbook.php?record_id=12782&page=244 on August 22, 2012). Note that local rise may be more or less than the global average. In addition to the increased mean sea level, additional wave action is associated with sea level rise. These factors could produce erosion that would threaten the structural stability of coastal infrastructure. While the foundation of the basin would be expected to be below the impacts of coastal erosion, the appurtenances such as the pipelines, operations building, and odor control facilities could be impacted. In order to provide protection to these facilities, it is assumed that locating the basin site east of Highway 1 will provide more protection to these facilities due to the additional space and civil infrastructure between the site and the coast.

Closer proximity to the ocean also increases potential damages to the mechanical and electrical aspects of the equalization basin due to increased salt and sand. Although proper design can mitigate these impacts, salt and sand will lead to additional maintenance costs.

- **Flooding** This section reviews the potential for flooding at the basin site as well as an initial assessment of the feasibility of reducing the potential for flooding of the equalization basin.
- Estimated Project Costs This section consists primarily of a table summarizing the project cost estimate.

Figure 5-2: Diameter-Depth Relationship for Equalization Basin

5.1 Site Alternative 1A: Linda Mar Park-and-Ride

Site Introduction

Site Alternative 1A (formerly known as Site A1) is located in an asphalted parking lot on the east side of Highway 1. This site is relatively close to the Linda Mar Pump Station, with only Site 4 being closer. It is one of the furthest inland sites (along with Sites 2A and 2B) being considered in this chapter. In Table 5-1 below, the sizing parameters for this alternative are presented.

Parameter	Site Alternative 1A
Basin Inner Diameter	81 feet
Depth from Ground to: Maximum Water Surface Basin Floor	15 feet 70 feet
Gravity Pipeline Length/Diameter	180 feet/24 inches 135 feet/18 inches
Force main Length/Diameter	100 feet (including vertical pump discharge)/12 inches
Basin Drainage Time/Flow Rate	24 hours/2.1 mgd

Table 5-1: Site Alternative 1A Infrastructure Dimensions and Rates

The basin drainage time assumes a discharge to the sewer in Linda Mar Blvd., where there is adequate capacity to accommodate a return flow rate of at least 2.1 mgd.

Construction is estimated to be complete by the end of June 2018. This is six months ahead of the RWQCB deadline.

Size and Suitability

This site currently functions as a bus station and parking lot. These types of uses are compatible with the post project site condition so there does not appear to be a conflict with the current use. This parcel is zoned for multiple family residential and is identified as mixed use neighborhood in the latest projection of land use for the Pacifica General Plan Update (*General Plan Public Review Draft*).

City staff have indicated that this parcel, with its General Plan designation as mixed use, is considered to be a potential source of revenue to the City. The combination of the basin at the west end of the parcel and the Caltrans construction trailers, which Caltrans has indicated they plan to maintain at the east end of the parcel, makes it difficult to develop this parcel as envisioned in the General Plan. Loss of revenue generating space would need to be evaluated as part of the project cost but is beyond the scope of this evaluation.

The Site 1A basin shown in Figure 5-3 assumes an inner diameter of approximately 81 feet. This dimension leaves adequate room for construction and construction staging. Construction staging would take advantage of the site length, since the width of the parcel is relatively narrow. Attachment C of this report reviews basin siting considerations and evaluates various locations within this parcel. Attachment F includes a site plan and sections that updates one of the figures in the TM presented in Attachment C.

Figure 5-3: Potential Basin Location and Pipeline Alignment at Site Alternative 1A

Adjacent Land Uses

The parcel is bounded by a gas station to the northwest, Linda Mar Blvd. to the southwest, residential structures to the northeast, and distantly to the southeast by De Solo Drive. Across Linda Mar Blvd. is a Safeway and shopping plaza. The proximity to the residences is the most critical aspect of the adjacent land uses. The basin would be approximately 20 feet from adjacent residential property lines, if located on the western end of the parcel. While construction methods can be implemented to reduce noise, dust, ground shaking, and other construction impacts, the potential risk of construction claims still exists. Considering public perception of wastewater projects and large construction in general, some opposition to locating an equalization basin close to the residences could be expected, particularly if another location further from residences is available. A public outreach meeting has already been held and the primary message from attendees supports this assumption. Public outreach and education would be an important component of a successful project at this location.

During the evaluation of Site Alternative 1A, concern was raised about potential ground contamination (soil or groundwater) from the adjacent gasoline station. (The gasoline station does not have double containment of its storage tanks.) To address these concerns, two environmental borings were conducted at the Site Alternative 1A site; one boring was at the proposed site of the equalization tank, and a second boring was close to the property boundary with the gasoline station property. Both borings were analyzed for hydrocarbon and metal contamination in the soil and the groundwater with the intent of estimating whether a pollution plume from the gasoline station was contaminating the site.

The analytical results of these borings are included in Attachment E. These results indicate that hydrocarbons and metals in the soil samples are below the Total Threshold Limit Concentrations set by CalEPA. Therefore, excavated soil from construction is not considered hazardous and would not require special handling or disposal. Excavation soil could be disposed of in municipal Class III landfills.

The analytical results for groundwater indicate that metals concentrations (in the groundwater) are not indicative of metals contamination from the adjacent gasoline station. The concentrations found are likely due to natural sources, or other hazardous sources not yet revealed. However, the concentrations found for arsenic, barium, beryllium, chromium, copper, nickel, vanadium, and zinc are above the Environmental Screening Level concentrations (ESLs) set by the State Water Resources Control Board. Therefore, treatment of water from dewatering would be needed to meet local discharge requirements. Treatment for these metals would probably include precipitation, coagulation, and filtration.

The analytical results indicate that the only hydrocarbons found in the groundwater are TPHD (diesel) and TBA, which would require activated carbon treatment of water from dewatering.

In summary, the environmental borings indicate that soils in this area of the site are not hazardous, but water from dewatering would need to be treated for diesel, TBA, and metals before discharge. The total treatment process would probably include precipitation, coagulation, filtration and activated carbon. The cost of providing this level of treatment has been included in the construction cost of Site Alternative 1A.

The eastern end of the parking lot is currently being used as a Caltrans field office. As mentioned previously, Caltrans intends to maintain this field office into the future.

Parcel Ownership

This parcel is currently owned by Caltrans. Caltrans is currently using this parcel as the site for their construction engineers' trailers for the Devils Slide Project and other local projects. Preliminary discussions and concept review with Caltrans representatives indicated that Caltrans was willing to sell the portion of the property not being used by the field offices to the City of Pacifica once departmental holds on the parcel are lifted.

The overall acquisition schedule for the parcel would be on the order of 18 months. Caltrans has indicated that they would grant access to the site during design once a purchase agreement in principal is in place. Should the acquisition process become prolonged, it could impact the ability of the City to meet its regulatory commitments regarding timing of the basin being available for operation.

It is unknown at this time what the contractual agreement between Caltrans and SamTrans is for use of the site as a bus station. It is assumed that the bus station would potentially need to be relocated during construction and perhaps permanently depending on final site configuration.

Geotechnical Considerations

The parcel is underlain by primarily marine terrace deposits with a cover layer of artificial fill. The fill composition and compaction is highly variable. The site has historically been a part of one or more coastal lagoons and/or sand dune deposits.

A geotechnical boring at this parcel was completed for this study. Table 5-2 summarizes the soil characteristics encountered by this boring.

Depth	Encountered	
0" – 4"	Asphaltic concrete pavement	
4" – 4'	Fill consisting of medium to high plasticity sandy clay with gravel	
4' – 14.5'	Lagoon deposits (medium stiff to 8.5'; very soft to 14.5')	
14.5' – 19'	Stiff clay	
19' – 64'	 Interlayered deposits of: Very stiff and medium dense to dense clay with varying amounts of sand and gravel Dense silty and clayey sand with varying amounts of gravel Hard sandy clay with gravel Very dense clayey sand with gravel 	
64' – 79'	Very dense silty sand with gravel deposits	
79' – 100'	Interlayered deposits of: • Hard clays with varying amounts of sand Very dense sand with gravel and varying amounts of clay and silt	

Table 5-2: Site Alternative 1A Soil Condition Based on Geotechnic	al Boring
---	-----------

Groundwater level was not available from the geotechnical boring due to the drilling method, but it was noted that the moist soils were encountered at about 10 feet depth. Monitoring by ADR Environmental Group of a nearby site indicates that groundwater levels are relatively shallow (1.8 to 7.86 feet deep). The environmental borings described above and in Attachment E suggest that groundwater is approximately

nineteen feet below ground surface. Groundwater levels are expected to vary seasonally and may also be influenced by tidal fluctuations.

Pipeline Connections

For the gravity influent line to avoid crossing Highway 1, two diversion points are recommended. The primary diversion would occur from the trunk sewer in Linda Mar Blvd. However, in order to passively activate this diversion, the hydraulic grade line in the system would need to be raised to a point where the sewer in Arguello Blvd. would be significantly surcharged (to about ½ foot from the ground). Therefore a second diversion from Arguelo Blvd., as shown in Figure 5-3, is proposed. This diversion would require constructing a pipeline through an existing utility easement from Arguello Blvd. to the northwest corner of the parking lot and then along the perimeter of the parcel to the basin location. For both diversions, new manholes would be constructed on the existing sewers. Alternatives to the diversion strategy described above include:

- Diversion of flow on the west side of Highway 1, closer to the pump station. This diversion strategy would require a pipeline crossing Highway 1 to get to the basin site and all associated permits and requirements to do so.
- Diversion of flow from Linda Mar Blvd. downstream of the junction of the two Linda Mar Blvd. sewers. This diversion strategy would include an automated valve remotely controlled based on Linda Mar Pump Station wet well level. Assuming the same diversion point, using the valve would allow diversions at lower hydraulic grade than the passive weir system assumed in other scenarios. This ability reduces sewer surcharging in the Arguello Blvd. sewer compared to a passive overflow.

The discharge force main would connect the submersible pump within the basin to the gravity sewer in Linda Mar Blvd. It is assumed at this time that an additional penetration could be made in an existing manhole to create this connection. This will need to be confirmed during design.

Coastal Commission Jurisdiction

Site Alternative 1A and associated pipelines are located east of Highway 1 and would not be visible from Highway 1. Therefore, they would be considered beyond the jurisdiction of the Coastal Commission and will not need a Coastal Development Permit. However, some degree of Coastal Commission consultation will still be needed to obtain their concurrence that they do not have jurisdiction on this project. If the diversion site were to be located on the west side of Highway 1, however, this would require some coordination and potentially a permit from the Coastal Commission. Additional coordination with the Coastal Commission would be necessary to confirm permit requirements.

Ocean Impacts

As mentioned above, Site Alternative 1A is located east of Highway 1. It is therefore considered protected from the effects of sea level rise and is anticipated to have reduced maintenance requirements due to salt and sand compared to other sites.

Flooding

This site is within the 1% annual chance flood, more commonly known as the 100-year floodplain. Additionally, City staff have noted that flooding has occurred at this site in the past. To reduce the risk of flooding the basin with stormwater, it would be necessary to raise the basin access points, create a berm around the completely buried basin, or include some other flood protection measure. The flood depth varies based on basin location within the parcel and design flood event. There are no apparent fatal flaws to protecting the basin from flooding at this site. The cost estimate for this site does not reflect a detailed cost
associated with flood protection since there are multiple variables associated with providing this security but does include a placeholder of \$100,000.

Estimated Project Costs

The estimated project costs for Site 1A are presented in Table 5-3. As can be seen in the table, the estimated cost for this site alternative is approximately \$13.0M at the midpoint of construction (assumed to be June 2016).

Basin & Site Summary							
	Tank Inner Diameter	81	Ft	Fill Depth	4 Ft		
	Cutter Soil Mix Wall Thickness	30	Inch	Bay Mud/Peat Depth	10 Ft		
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth	61 Ft		
	Decking Thickness	8	Inch	Total Excavation Depth	75	Ft	
	Girder Depth	4.5	Ft				
	Access Depth	7	Ft				
	Tipping Bucket Depth	2	Ft				
	Free Space Depth	1	Ft Ft				
	Storage Depth	55	FL F+				
	Foundation Thickness	5	FL F+				
		10 10		l			
Project Element	Category	Sub-Category	Quantity	Unit	Unit Cost	Extended Cos	
Basin Structure							
	Basin Walls						
	C	utter Soil Mix Wall	22,034	SF	\$ 20.00	\$ 440,6	
	Shotcrete (w/Fiber Reinforcement)		17,686	SF	\$ 12.45	\$ 220,1	
	Welded Wire M	esh (6x6 - W4xW4)	177	CSF	\$ 78.50	\$ 13,8	
		Smooth Finish	17,686	SF	\$ 0.75	\$ 13,2	
	Concrete Base/Plug						
		Concrete/Rebar	1,002	CY	\$ 195.00	\$ 195,3	
	Basin Cover						
	[Decking (Concrete)	150	CY	\$ 850.00	\$ 127,6	
	Decking (Rebar @ 205 lbs/0	CY concrete, FDOT)	30,786	LBS	\$ 1.10	\$ 33,8	
	Precast/Prestressed I-Girders	(AASHTO Type IV)	796	LF	\$ 190.00	\$ 151,2	
	Excavation						
		General	15,063	CY	\$ 70.00	\$ 1,054,4	
	Anchoring						
	Tiedown Soil Anchors (10' on center) Spoil Offhaul and Disposal:		0	EA	\$ 4,200.00	\$ -	
	Fill	(Assumes Class III)	1,353	TON	\$ 38.00	\$ 51,4	
	Bay Mud/Peat	(Assumes Class II)	2,705	TON	\$ 47.00	\$ 127,1	
	Native Soil	(Assumes Class III)	20,684	TON	\$ 38.00	\$ 786,0	
	Elevated Equipment/Access Deck						
	Steel for Concrete Perimeter B	eams (2@12"x12")	10	CY	\$ 259.00	\$ 2,4	
	Angle Sup	port (4.5' @12' OC)	22	EA	\$ 927.00	\$ 20,3	
		1.5" Alum. Grating	1,018	SF	\$ 56.93	\$ 57,9	
		C10x4.25 (2)	484	LF	\$ 163.58	\$ 79,1	
		Guardrail	226	LF	\$ 106.95	\$ 24,1	
Subtotal						\$ 3,399,2	
Basin Appurtenances							
	Pumps		2	EA	\$ 53,000.00	\$ 106,0	
	Controls		1	Allowance	\$ 80,000.00	\$ 80,0	
	Standby Power		1	Allowance	\$ 150,000.00	\$ 150,0	
	Foundation and Fencing		1	Allowance	\$ 64,000.00	\$ 64,0	
	Washdown/10' of Header		26	EA	\$ 11,000.00	\$ 286,0	
	Odor Control						
	Odor Control I	Bed (2,025 sf x 6 ft)	1	Allowance	\$ 100,000.00	\$ 100,0	
	Du	uctwork and 2 Fans	1	Allowance	\$ 100,000.00	\$ 100,0	
	Miscellaneous Piping		1	Allowance	\$ 80,000.00	\$ 80,0	
Subtotal						\$ 966,0	

Table 5-3: Total Project	Costs for Site	Alternative 1A
--------------------------	----------------	----------------

Pipes						
	Diversion Manhole	2	EA	\$ 10.000.00	Ś	20.000
	Manholes	3	FΔ	\$ 10,000,00	Ś	30,000
	2/1" Diameter Gravity (Open Cut in Wet Sand)	180	IF	\$ 180.00	¢	86,000
	18" Diameter Gravity (Open Cut in Wet Sand)	135	IF	\$ 360.00	¢	48 600
	Interlacking Shoet Bilos (9' doop)	133	CE	\$ 300.00 \$ 12.00	ې د	48,000
		5,040	SF	\$ 12.00	Ş	7 200
	12" Diameter Force Main (Open Cut)	30	LF	\$ 240.00	\$	7,200
Subtotal					\$	252,680
Other						
	Dewatering (4 sump pumps and treatment)	1	Allowance	\$ 10,000.00	\$	10,000
	Contaminated Groundwater Treatment	1	Allowance	\$ 50,000.00	\$	50,000
	Paving (Basin Diameter + 20' buffer)	1,018	SY	\$ 50.00	\$	50,894
	Paving (Force main trench)	10	SY	\$ 50.00	\$	500
	Sidewalks	10	SF	\$ 5.00	\$	50
	Traffic Control	1	Allowance	\$ 53.000.00	Ś	53.000
	Lot Improvements			,,	·	,
	Install Turf	1	TSF	\$ 400.00	Ś	400
	Shrubs (5' OC)	28	FA	\$ 50.00	ć	1 400
	Flood Drotaction Massures	20	Allowance	\$ 100,000,00	د م	1,400
	Flood Protection Measures	1	Allowance	\$ 100,000.00	Ş	100,000
	Utility Relocation	1	Allowance	\$ 500,000.00	Ş	500,000
	Park and Ride Relocation	1	Allowance	\$ 100,000.00	Ş	100,000
Subtotai					\$	866,244
Construction Subtotal					\$	5,484,165
Contractor Costs						
contractor costs	Mabilization (Domobilization		% of Const Subtotal	E0/	ć	274 209
				376	ې م	274,208
	Contractor Overnead and Profit		% of Const. Subtotal	15%	Ş	822,625
	Change Order Allowance		% of Const. Subtotal	5%	Ş	274,208
Subtotal					Ś	1.371.041
					ľ	,- ,-
Professional Services						
	Environmental Documentation/Permitting	1	Allowance	\$ 350,000.00	\$	350,000
	Engineering		% of Const. Subtotal	10%	Ś	548.416
	legal		% of Const. Subtotal	2%	Ś	109,683
	Construction Management		% of Const. Subtotal	10%	Ś	548 416
			Non const. Subtotal	10/0	7	540,410
Subtotal					Ś	1 556 516
Subtotal						1,550,510
Design and Construction	Subtotal of Above				\$	8,411,722
Contingency			% of Project Subtotal	25%	Ś	2.102.931
			, , , , , , , , , , , , , , , , , , , ,		·	, - ,
Subtotal					Ś	10,514,653
					7	
Real Estate Costs						
	Property Acquisition	43,750	SF	\$ 40.00	\$	1,750,000
	Property Sale	0	SF	\$ (40.00)	\$	-
				,		
Subtotal					\$	1,750,000
					·	, ,
Total (10/2013 Dollars)	CCI = 9,689				\$	12,300,000
Total (6/2016 Dollars)	CCI = 10,238 (Projected)				\$	13,000,000

(Table 5-3 Continued)

5.2 Site Alternatives 2A and 2B: Skate Park Parking Lot

Site Introduction

The Site Alternative 2A (formerly known as Site B) and Site Alternative 2B basins and potential pipeline alignments are shown in Figure 5-4. As can be seen, the basin is located near the Pacifica Skate Park and Community Center on the east side of Highway 1. Attachment F includes a figure that shows how the equalization basin could be integrated into this location. Site 2A and Site 2B are differentiated by their different influent gravity pipeline alignments. This basin site is one of the two furthest sites from the Linda Mar Pump Station. It is one of the furthest inland sites (along with Site 1A) being considered in this chapter. Table 5-4 summarizes some of the infrastructure characteristics proposed for this site. The sections below summarize some key physical parameters of Sites 2A and 2B.

Parameter	Site 2A	Site 2B
Basin Inner Diameter	95 feet	95 feet
Depth from Ground to: Maximum Water Surface Basin Floor	15 feet 55 feet	15 feet 55 feet
Gravity Pipeline Length/Diameter	1,360 feet/24 inches	1,650 feet/24 inches
Force main Length/Diameter	530 feet (including vertical pump discharge)/12 inches	530 feet (including vertical pump discharge)/12 inches
Basin Drainage Time/Flow Rate	30 hours/1.7 mgd	30 hours/1.7 mgd

Table 5-4: Site Alternatives 2A and 2B Infrastructure Dimensions and Rates

The basin drainage time assumes a discharge to the 12-inch sewer in Crespi Drive, which extends across Highway 1 and then parallels the shoreline to the Linda Mar Pump Station. Modeling indicates that there is approximately 1.7 mgd capacity available within the existing sewer without causing additional surcharging through much of the sewer. As shown in Figure 5-5, if 2.1 mgd were to be discharged to the sewer (to drain the basin within 24 hours), the sewer would be significantly surcharged along Crespi Drive, resulting in a potential overflow. This is largely due to one or both of the apparent reverse grades in the sewer. Addressing the hydraulic capacity limitation would be costly to correct as it likely involves pipe replacement for both the Crespi sewer and beachfront sewer between Crespi Dr. and the Linda Mar Pump Station. Thus, it would also be time consuming due to Coastal Commission and Caltrans permitting to increase the capacity of the Crespi Drive sewer to obtain more rapid drain times.

Figure 5-4: Potential Basin Location and Pipeline Alignments at Site Alternatives 2A and 2B

Figure 5-5: Hydraulic Grade Line for Site Alternatives 2A and 2B: 2.1 mgd Discharge to LH5

Construction for Site Alternative 2A is estimated to be complete by the end of December 2018. This is at the RWQCB deadline. Construction for Site Alternative 2B is estimated to be complete by the end of June 2018. This is six months ahead of the RWQCB deadline. The longer project completion time for Site Alternative 2A is due to the increased time needed to secure Caltrans and Coastal Commission permits for this alternative's pipeline routes which cross and run adjacent to Highway 1.

Size and Suitability

This site is currently split between two uses. The western portion of the site is undeveloped, sandy open space. The eastern portion of the site is a parking lot for the Pacifica Community Center. These types of uses are compatible with the post project site condition so there does not appear to be any long-term conflict with the current uses. This parcel is zoned for controlled manufacturing and is identified as Public and Semi-public in the latest projection of land use for the Pacifica General Plan Update (*General Plan Public Review Draft*). Zoning changes may be needed to site the equalization basin on this parcel.

The parking lot would be closed during construction. Alternate parking would need to be identified to offset the loss of the free, publicly accessible parking during the construction period. The City does not believe that construction and operation of the basin for Site 2A or 2B would impact revenue.

The basin shown in Figure 5-4 assumes an inner diameter of approximately 95 feet. This should leave adequate room for construction at the surface. The parking lot not dedicated to the basin footprint could be used as a staging area for the contractor.

Adjacent Land Uses

This construction site is bounded by open space areas to the east and west, residential structures to the south, and the skate park and Community Center complex to the north. There is a large drainage/storm drain between the parking lot and the residences. The proximity to the residences is the most critical aspect of the adjacent land uses. The basin shown in Figure 5-4 is approximately 45 feet from the adjacent private property fence line. If the basin were to be moved farther north in the parking lot, the diameter of the basin

would be severely restricted (i.e. on the order of 60 feet, with a resulting interior depth of 120 feet). With the addition of retaining walls, as shown in Figure 5-6, the diameter could be increased to approximately 78 feet, with a resulting interior depth of 74 feet. Constructing the basin in this narrower part of the parking lot increases construction difficulty due to access restrictions and staging and sequencing challenges. Since the wider portion of the site, where the basin is located in Figure 5-4, is available, it is difficult to recommend locating the basin in the more constrained area.

While construction methods can be implemented to reduce noise, dust, ground shaking, and other construction impacts, the potential risk of construction claims still exists. Considering public perception of wastewater projects and large construction in general, some opposition to locating an equalization basin close to the residences could be expected, particularly if another site further from residences is available. A public outreach meeting has already been held and the primary message from attendees supports this assumption. Public outreach and education would be an important component of a successful project at this location.

Also of note are the adjacent natural areas (to the east and to the west of the skate park). The natural area to the west is far enough that environmental concerns can likely be mitigated through normal construction management practices. The natural area to the east is identified by the *Pacifica General Plan Public Review Draft* as the site of Linda Mar Shopping Center. Should the Shopping Center be developed prior to implementation of the basin project, the environmental sensitivity of the area would be diminished. At this

time though, it should be assumed that working close to these natural areas may require some additional precautions and biological surveys during the construction period.

Parcel Ownership

This site is owned by the City of Pacifica and therefore would avoid the cost of land purchase. The City has indicated a willingness to close this parking lot during construction.

Geotechnical Considerations

Site 2 is underlain by primarily marine terrace deposits with a cover layer of artificial fill. The fill composition and compaction is highly variable. The site has historically been a part of one or more coastal lagoons and/or sand dune deposits.

A geotechnical boring at Site 2 was completed for this study. Table 5-5 summarizes the soil encountered by this boring.

Depth	Encountered
0" – 2"	Asphaltic concrete
2" – 5'	Fill consisting of clayey sand with gravel
5' – 8'	High plasticity clay (soft with peaty soil layers)
8' – 20'	High plasticity clay (very soft with peaty soil layers)
	Interlayered deposits of:Stiff to hard lean clay with varying amounts of sand and gravel
	• Medium dense to very dense sand with varying amounts of gravel, silt, and clay
20' – 76.5'	Dense to very dense gravels with varying amounts of sand, silt, and clay

Table 5-5: Site 2 Soil Condition Based on Geotechnical Boring

Two reference borings were also available for the adjacent skate park. Findings from these borings supported the above layer descriptions with some variation as described in Attachment B.

Groundwater level was not available from the boring due to the drilling method, but it was noted that the moist soils were encountered at about 7 feet depth. Groundwater levels are expected to vary seasonally and may also be influenced by tidal fluctuations.

Pipeline Connections

Pipeline connections for Site 2A and 2B are relatively complex compared to Site 4 and roughly equivalent to Sites 3A and 3B. For Site 2A, the diversion manhole would be located adjacent to the Linda Mar Pump Station, and the diversion pipeline would need to cross several major storm drains and sewers near the diversion point. Crossing Highway 1 will require a permit from Caltrans and may require casing around the pipe. For Site 2B, two diversion points from the collection system are required to make this alternative hydraulically feasible. There are several locations where the diversion pipeline would likely cross existing pipelines though it is assumed that the diversion pipeline would be lower than those existing pipelines. There are fewer conflicts than the pipeline alignments shown for Sites 2A and 3A. There are no Caltrans permits required for Site 2B pipeline alignment.

Relocation of the conflicting pipelines, wet well work, or optimization of the diversion pipeline alignment should be investigated during detailed design to minimize the costs of pipeline costs. The diversion pipeline connection for Sites 2A and 2B requires more pipeline length than the diversion pipeline connections for Site Alternative 1A.

The discharge force main would connect the submersible pump within the basin to the gravity sewer in Crespi Drive. It is assumed at this time that an additional penetration could be made in an existing manhole to create this connection. This will need to be confirmed during design.

Coastal Commission Jurisdiction

The basin for Site Alternative 2A is located east of Highway 1 and is therefore considered to be removed from the Coastal Commission jurisdiction. For Site 2A, the diversion manhole and some pipeline work are west of Highway 1 however, and would require some coordination and potentially a permit from the Coastal Commission. Additional coordination with the Coastal Commission would be necessary to determine any permit requirements.

Alternative Site 2B and associated pipelines are located east of Highway 1 and would not be visible from Highway 1. Therefore, they would be considered beyond the jurisdiction of the Coastal Commission and will not need a Coastal Development Permit. However, some degree of Coastal Commission consultation will still be needed to obtain their concurrence that they do not have jurisdiction on this project.

Ocean Impacts

As mentioned above, Site Alternatives 2A and 2B are some of the farthest inland sites and are located east of Highway 1. They are therefore considered protected from the effects of sea level rise and are anticipated to have reduced maintenance requirements due to salt and sand compared to other sites.

The influent pipelines to Site Alternative 2B are more protected from ocean impacts than the influent pipelines to Site Alternative 2A due to their inland location.

Flooding

This site is within the 1% annual chance flood. Additionally, City staff have noted previous flooding at this site. To reduce the risk of flooding the basin with stormwater, it would be necessary to raise the basin access points, create a berm around the completely buried basin, or include some other flood protection measure. The flood depth varies based on the design flood event. There are no apparent fatal flaws to protecting the basin from flooding at this site. The cost estimate for this site does not reflect a detailed cost associated with flood protection since there are multiple variables associated with providing this security, but does include a placeholder of \$100,000.

Estimated Project Costs

The estimated project costs for Site Alternative 2A are presented in Table 5-6 and the estimate project costs for Site Alternative 2B are presented in Table 5-7. As can be seen in the tables, the estimated cost for this project is approximately \$15.3M (Site 2A) or \$15.4M (Site 2B) at the midpoint of construction (assumed to be June 2016). These costs include an allowance for groundwater treatment for the metals found in the Site 1A environmental boring that were not likely to have been leaked from the neighboring gas station. While pipeline unit costs are cheaper for Site 2B than Site 2A, the savings are offset by the trench plates assumed at this time to be necessary during construction, longer gravity diversion length, as well as the road paving costs associated with the open trench method.

Basin & Site Summary								
-	Tank Inner Diameter	95	Ft	Fill Depth		5 Ft		
	Cutter Soil Mix Wall Thickness	30 Inch		Bay Mud/Peat Depth	15	Ft		
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth	40	Ft		
	Decking Thickness	8	Inch	Total Excavation Depth	60	Ft		
	Girder Depth	4.5	Ft					
	Access Depth	7	Ft					
	Tinning Bucket Denth	2	Ft					
	Free Space Denth	1	Ft					
	Storage Denth	40	Ft					
	Foundation Thickness	-0	E+					
	Cutter Soil Mix Cutoff Wall Depth	10	Ft					
	cutter son war beptin	10	10 11					
Project Element	Category	Sub-Category	Quantity	Unit	Unit Cost	Extended Cost		
Basin Structure								
	Basin Walls							
	с	utter Soil Mix Wall	21.179	SF	\$ 20.00	\$ 423.581		
	Shotcrete (w/Fib	er Reinforcement)	16,266	SF	\$ 12.45	\$ 202.507		
	Welded Wire M	esh(6x6 - W/4xW/4)	163	CSF	\$ 78.50	\$ 12 768		
		Smooth Einich	16 266	SE	¢ /0.50 ¢ ∩7⊑	¢ 12,700		
	Concrete Race /RIve	SHOULIFIIISI	10,200	51	φ 0.75	× 12,199		
	Concrete Base/ Plug	Concrote /Delte	1 309	CV	¢ 105.00	¢ 200.054		
		Concrete/Rebar	1,368	CY	\$ 195.00	\$ 266,854		
	Basin Cover							
	L L	Decking (Concrete)	202	CY	\$ 850.00	\$ 171,496		
	Decking (Rebar @ 205 lbs/0	CY concrete, FDOT)	41,361	LBS	\$ 1.10	\$ 45,497		
	Precast/Prestressed I-Girders	(AASHTO Type IV)	796	LF	\$ 190.00	\$ 151,240		
	Excavation							
		General	16,467	CY	\$ 70.00	\$ 1,152,719		
	Anchoring							
	Tiedown Soil Anch	nors (10' on center)	0	EA	\$ 4,200.00	\$-		
	Spoil Offhaul and Disposal:							
	Fill	(Assumes Class III)	2,309	TON	\$ 38.00	\$ 87,754		
	Bay Mud/Peat	(Assumes Class II)	5,542	TON	\$ 47.00	\$ 260,491		
	Native Soil	(Assumes Class III)	18.552	TON	\$ 38.00	\$ 704.957		
	Elevated Equipment/Access Deck	(,	-,	-				
	Concrete Perimeter B	eams (2@12"v12")	11	cv	\$ 259.00	¢ 2,893		
	Anglo Sup	rant (4 E' @ 12' OC)	25	EA	\$ 235.00	¢ 2,000		
	Aligie 30b	1 5" Aluma Cretina	1 104		\$ 527.00	¢ 23,173		
		1.5 Alum. Graung	1,194	55	\$ 50.95	\$ 07,905		
		C10x4.25(2)	572		\$ 103.58	\$ 93,530		
		Guardrail	270	LF	\$ 106.95	\$ 28,895		
Subtotal						\$ 3,708,521		
Basin Appurtenances								
	Pumps		2	EA	\$ 53,000.00	\$ 106,000		
	Controls		1	Allowance	\$ 80,000.00	\$ 80,000		
	Standby Power		1	Allowance	\$ 150.000.00	\$ 150.000		
	Foundation and Fencing		1	Allowance	\$ 64,000,00	\$ 64.000		
	Washdown/10' of Header		29	FA	\$ 11,000,00	\$ 310,000		
	Odor Control		23		÷ 11,000.00	- JI 313,000		
	Odor Control	Rod (2 025 cf v 6 f+)	1	Allowance	\$ 100 000 00	\$ 100.000		
		ictwork and 2 Ears	1	Allowance	\$ 100,000.00	¢ 100,000		
	Miscollapaous Dining	uctivity and Z Fam	1	Allowance	\$ 200,000.00	¢ 100,000		
			T	Anowance	ຸລຸ _{60,000.00}	ې ۵ <i>0,000</i>		
Subtotal						\$ 999,000		

Dinoc						
Fipes	Diversion Mechale	1	EA.	¢ 10.000.00	~	10.000
		1	EA	\$ 10,000.00	\$	10,000
	Manhole	4	EA	\$ 10,000.00	Ş	40,000
	24" Diameter Gravity (Pilot Guided Augur Boring)	1,360	LF	\$ 900.00	\$	1,224,000
	Boring Pit	7	EA	\$ 100,000.00	\$	700,000
	24" Diameter Gravity (Open Cut in Wet Sand)	40	LF	\$ 480.00	\$	19,200
	Interlocking Sheet Piles (15' deep)	1.200	SF	\$ 12.00	Ś	14.400
	12" Diameter Force Main (Open Cut)	530	IF	\$ 240.00	¢	127 200
	12 Diameter Force Main (Open eut)	550		\$ 240.00	7	127,200
Cubtotal					~	2 124 000
Subtotul					Ş	2,134,000
Other						
	Dewatering (4 sump pumps and treatment)	1	Allowance	\$ 10,000.00	\$	10,000
	Contaminated Groundwater Treatment	1	Allowance	\$ 50,000.00	\$	50,000
	Paving (Partial New Parking Lot (200'x90'))	2,000	SY	\$ 50.00	\$	100,000
	Paving (Force main trench)	150	SY	\$ 50.00	Ś	7.500
	Sidewalks	160	SF	\$ 5.00	Ś	800
	Traffic Control	1	Allowance	\$ 53,000,00	ć	53 000
		T	Anowance	\$ 55,000.00	Ş	33,000
	Lot improvements	-			4	
	Install Turf	2	TSF	\$ 400.00	Ş	800
	Shrubs (5' OC)	70	EA	\$ 50.00	\$	3,500
	Flood Protection Measures	1	Allowance	\$ 100,000.00	\$	100,000
	Utility Relocation	1	Allowance	\$ 500,000.00	\$	500,000
	Park and Ride Relocation	0	Allowance	\$ 100.000.00	Ś	-
				+	1	
Subtotal					ć	875 600
Subtotul					ډ ا	823,000
Construction Subtotal					Ş	7,667,921
Contractor Costs						
	Mobilization/Demobilization		% of Const. Subtotal	5%	\$	383,396
	Mobilization/Demobilization Contractor Overhead and Profit		% of Const. Subtotal % of Const. Subtotal	5% 15%	\$ \$	383,396 1,150,188
	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383 396
	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383,396
Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383,396
Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i>
Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i>
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance		% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5%	\$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i>
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance	5% 15% 5% \$ 350,000.00	\$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10%	\$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2%	\$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792
Subtotal Professional Services	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792
Subtotal Professional Services Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 2,036,943
Subtotal Professional Services Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i>
Subtotal Professional Services Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i>
Subtotal Professional Services Subtotal Design and Construction	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844
Subtotal Professional Services Subtotal Design and Construction Contingency	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10% 25%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461
Subtotal Professional Services Subtotal Design and Construction Contingency	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10% 25%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10% 25%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i>
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10% 2%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 1,916,980 350,000 766,792 153,358 766,792 2,036,943 11,621,844 2,905,461 14,527,305
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal	5% 15% 5% \$ 350,000.00 10% 2% 10% 25%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,30</i> 5
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above	0	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 14,527,305
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale	0	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ (40.00)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i>
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale	1 0 0	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i> - -
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale	0	% of Const. Subtotal % of Project Subtotal SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 1,916,980 350,000 766,792 153,358 766,792 2,036,943 11,621,844 2,905,461 14,527,305
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF SF	\$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 1,916,980 350,000 766,792 153,358 766,792 2,036,943 11,621,844 2,905,461 14,527,305
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs Subtotal	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale	1 0 0	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i> - - -
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs Subtotal Total (10/2013 Dollars)	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale CCI = 9,689	1	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Project Subtotal SF SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i> - - 14,500,000
Subtotal Professional Services Subtotal Design and Construction Contingency Subtotal Real Estate Costs Subtotal Total (10/2013 Dollars) Total (6/2016 Dollars)	Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance Environmental Documentation/Permitting Engineering Legal Construction Management Subtotal of Above Property Acquisition Property Sale CCI = 9,689 CCI = 10,238 (Projected)	1 0 0	% of Const. Subtotal % of Const. Subtotal % of Const. Subtotal Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Project Subtotal SF SF	5% 15% 5% \$ 350,000.00 10% 2% 10% 25% \$ 40.00 \$ (40.00)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	383,396 1,150,188 383,396 <i>1,916,980</i> 350,000 766,792 153,358 766,792 <i>2,036,943</i> 11,621,844 2,905,461 <i>14,527,305</i> - - 14,500,000 15,300,000

(Table 5-6 Continued)

Basin & Site Summary							
-	Tank Inner Diameter	95	Ft Fill Depth		5 Ft		
	Cutter Soil Mix Wall Thickness	30 Inch		Bay Mud/Peat Depth	15	Ft	
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth	40	Ft	
	Decking Thickness	8	Inch	Total Excavation Depth	60	Ft	
	Girder Depth	4.5	Ft		1	1. •	
	Access Depth	7	Ft				
	Tinning Bucket Denth	2	Ft				
	Free Space Denth	1	Ft				
	Storage Denth	40	Ft				
	Foundation Thickness	-0	E+				
	Cutter Soil Mix Cutoff Wall Depth	10	E+				
	cutter son war beptin	10 11		I			
Project Element	Category	Sub-Category	Quantity	Unit	Unit Cost	Extended Cost	
Basin Structure							
	Basin Walls						
	с	utter Soil Mix Wall	21.179	SF	\$ 20.00	\$ 423.581	
	Shotcrete (w/Fib	er Reinforcement)	16,266	SF	\$ 12.45	\$ 202,507	
	Wolded Wire Mech (Syc. 144-144)		163	CSE	\$ 7850	\$ 12 762	
		Smooth Einich	16 266	SE	¢ /0.30	¢ 12,700	
	Concrete Dass /Dive	SHOULIFILISH	10,200	51	0.75 ب	۲۲,199 ب	
	Concrete Base/Plug	o . /o .	4.959		4 405 00		
		Concrete/Rebar	1,368	CY	\$ 195.00	\$ 266,854	
	Basin Cover						
	[Decking (Concrete)	202	CY	\$ 850.00	\$ 171,496	
	Decking (Rebar @ 205 lbs/0	CY concrete, FDOT)	41,361	LBS	\$ 1.10	\$ 45,497	
	Precast/Prestressed I-Girders	(AASHTO Type IV)	796	LF	\$ 190.00	\$ 151,240	
	Excavation						
		General	16,467	СҮ	\$ 70.00	\$ 1,152,719	
	Anchoring		-, -			, , , ,	
	Tiedown Soil Anch	ors (10' on center)	0	FΔ	\$ 1,200,00	¢ .	
	Spoil Offhaul and Disposal:		0		Ş 4,200.00		
		(Accumes Class III)	2 200	TON	ć 20.00	ć 07.754	
	FIII	(Assumes class III)	2,309	TON	\$ 58.00	\$ 67,754	
	Bay Mud/Peat	(Assumes Class II)	5,542	TON	\$ 47.00	\$ 260,491	
	Native Soil	(Assumes Class III)	18,552	TON	\$ 38.00	\$ 704,957	
	Elevated Equipment/Access Deck						
	Concrete Perimeter B	eams (2@12"x12")	11	CY	\$ 259.00	\$ 2,893	
	Angle Sup	port (4.5' @12' OC)	25	EA	\$ 927.00	\$ 23,175	
		1.5" Alum. Grating	1,194	SF	\$ 56.93	\$ 67,963	
		C10x4.25(2)	572	LF	\$ 163.58	\$ 93,530	
		Guardrail	270	LF	\$ 106.95	\$ 28.895	
Subtotal						\$ 3,708,521	
Basin Appurtenances							
	Pumps		2	EA	\$ 53,000.00	\$ 106,000	
	Controls		1	Allowance	\$ 80,000.00	\$ 80,000	
	Standby Power		1	Allowance	\$ 150.000.00	\$ 150.000	
	Foundation and Fencing		1	Allowance	\$ 64,000,00	\$ 64,000	
	Washdown/10' of Header		20	FΔ	\$ 11,000,00	\$ 210,000	
	Odor Control		29		÷ 11,000.00	÷ 319,000	
		Dod (2 025 - f (1)	4	Allowance	¢ 100 000 00	ć 100.000	
	Udor Control I	beu (2,025 ST X 6 ft)	1	Anowance	\$ 100,000.00	ş 100,000	
	Du	uctwork and 2 Fans	1	Allowance	\$ 100,000.00	\$ 100,000	
	Miscellaneous Piping		1	Allowance	\$ 80,000.00	\$ 80,000	
						_	
Subtotal						\$	

Pines						
Fipes	D' suite Markela	2	F A	¢ 40.000.00	~	20.000
	Diversion Mannole	2	EA	\$ 10,000.00	Ş	20,000
	Manhole	7	EA	\$ 10,000.00	\$	70,000
	24" Diameter Gravity (Pilot Guided Augur Boring)	150	LF	\$ 900.00	\$	135,000
	Boring Pit	2	EA	\$ 100,000.00	\$	200,000
	24" Diameter Gravity (Open Cut)	1.540	IF	\$ 480.00	Ś	739 200
	Interlocking Sheet Piles (12' deen)	36 960	SE	\$ 12.00	ć	143 520
		50,900	3F	\$ 12.00	ې د	443,320
	12" Diameter Force Main (Open Cut)	530	LF	\$ 240.00	Ş	127,200
Subtotal					Ş	1,734,920
Other						
	Dewatering (4 sump pumps and treatment)	1	Allowance	\$ 10,000.00	\$	10,000
	Contaminated Groundwater Treatment	1	Allowance	\$ 50.000.00	Ś	50.000
	Paving (Partial New Parking Lot (200'x90'))	2 000	sv	\$ 50.00	¢	100,000
	Daving (Force main tranch)	2,000	ST CV	\$ 50.00	ې د	7 500
		150	51	\$ 50.00	Ş	7,500
	Paving (Street)	8,889	SY	\$ 50.00	Ş	444,444
	Sidewalks	160	SF	\$ 5.00	\$	800
	Traffic Control	1	Allowance	\$ 53,000.00	\$	53,000
	Lot Improvements					
	Install Turf	2	TSF	\$ 400.00	Ś	200
	charles (FLOC)	70		¢ =0.00	ć	3 500
	Shrubs (5' UC)	70		⇒ 50.00	Ş	3,500
	Flood Protection Measures	1	Allowance	\$ 100,000.00	Ş	100,000
	Utility Relocation	1	Allowance	\$ 500,000.00	\$	500,000
	Park and Ride Relocation	0	Allowance	\$ 100,000.00	\$	-
Subtotal					Ś	1 270 044
oubtotu.					÷	1)2/0/07/
Construction Subtotal					ć	7 712 /185
construction subtotal					Ŷ	7,712,403
Contractor Costs						
contractor costs	Mahilizatian (Damahilizatian		0/ of Count Cultured	F0/	÷	205 (24
	Mobilization/Demobilization		% of Const. Subtotal	5%	\$	385,624
	Contractor Overhead and Profit		% of Const. Subtotal	15%	Ş	1,156,873
	Change Order Allowance		% of Const. Subtotal	5%	\$	385,624
Subtotal					\$	1,928,121
Professional Services						
rioressional services	Environmental Documentation/Permitting	1	Allowance	\$ 350,000,00	ċ	350.000
		1	Allowance	\$ 550,000.00	ې ب	550,000
	Engineering		% of Const. Subtotal	10%	Ş	771,249
	Legal		% of Const. Subtotal	2%	\$	154,250
	Construction Management		% of Const. Subtotal	10%	\$	771,249
Subtotal					Ś	2.046.747
					7	
Design and Construction	Subtotal of Above				ć	11 697 252
Design and construction	Subtotal of Above			250/	ې د	11,007,555
Contingency			% of Project Subtotal	25%	Ş	2,921,838
Subtotal					\$	14,609,192
Subtotal					\$	14,609,192
Subtotal Real Estate Costs					\$	14,609,192
Subtotal Real Estate Costs	Property Acquisition	0	SF	\$ 40.00	\$ \$	- 14,609,192
Subtotal Real Estate Costs	Property Acquisition Property Sale	0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$	14,609,192 - -
Subtotal Real Estate Costs	Property Acquisition Property Sale	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$	14,609,192 - -
Subtotal Real Estate Costs	Property Acquisition Property Sale	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$	
Subtotal Real Estate Costs Subtotal	Property Acquisition Property Sale	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$	14,609,192 - - -
Subtotal Real Estate Costs Subtotal	Property Acquisition Property Sale	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$ \$	14,609,192
Subtotal Real Estate Costs Subtotal Total (10/2013 Dollars)	Property Acquisition Property Sale CCI = 9,689 CCI = 10.238 (Designed)	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$ \$ \$	14,609,192 - - - 14,600,000
Subtotal Real Estate Costs Subtotal Total (10/2013 Dollars) Total (6/2016 Dollars)	Property Acquisition Property Sale CCI = 9,689 CCI = 10,238 (Projected)	0 0	SF SF	\$ 40.00 \$ (40.00)	\$ \$ \$ \$ \$ \$ \$	14,609,192 - - - 14,600,000 15,400,000

5.3 Site Alternatives 3A and 3B: Crespi Parking Lot

Site Introduction

The Site Alternative 3A (formerly known as Site C1) and Site Alternative 3B basin and potential pipeline alignments are shown in Figure 5-7. As can be seen, the site is located near the Pacifica Skate Park and Community Center on the east side of Highway 1. Attachment F includes a figure that shows how the equalization basin could be integrated into this location. Site 3A and Site 3B are differentiated by their different influent gravity pipeline alignments. This basin site is the farthest site from the Linda Mar Pump Station by approximately 100 feet. It is the second closest site to the ocean being considered in this chapter. Table 5-8 summarizes some of the infrastructure characteristics proposed for this site. The sections below summarize some key physical parameters of Sites 3A and 3B.

Parameter	Site 3A	Site 3B
Basin Inner Diameter	100 feet	100 feet
Depth from Ground to: Maximum Water Surface Basin Floor	16 feet 52 feet	15 feet 51 feet
Gravity Pipeline Length/Diameter	1,500 feet/24 inches	2,025 feet/24 inches
Force main Length/Diameter	290 feet (including vertical pump discharge)/12 inches	290 feet (including vertical pump discharge)/12 inches
Basin Drainage Time/Flow Rate	30 hours/1.7 mgd	30 hours/1.7 mgd

Table 5-8: Site Alternatives 3A and 3B Infrastructure Dimensions and Rates

The pipeline alignment for Site Alternative 3B is evaluated using a 0.003 slope whereas the values in Table 3-9 for Site 3A reflect a 0.005 slope, resulting in different basin depths.

As with Site Alternatives 2A and 2B, the use of Site 3A or 3B would assume a discharge to the sewer in Crespi Drive. The use of Site 3A or 3B would therefore have the same implications regarding the Crespi Drive and beachfront sewers as described for Sites 2A and 2B.

Figure 5-7: Potential Basin Location and Pipeline Alignments at Site Alternatives 3A and 3B

Construction for Site Alternative 3A is estimated to be complete by the end of December 2018. This is at the RWQCB deadline. Construction for Site Alternative 3B is estimated to be complete by the end of June 2018. This is six months ahead of the RWQCB deadline. The longer project completion time for Site Alternative 3A is due to the increased time needed to secure Caltrans and Coastal Commission permits for this alternative's pipeline routes which cross and run adjacent to Highway 1.

Size and Suitability

This site currently functions as a parking lot. These types of uses are compatible with the post project site condition so there does not appear to be any long-term conflict with the current use. This parcel is zoned for controlled manufacturing, however, and is identified as Visitor Service Commercial in the latest projection of land use for the Pacifica General Plan Update (*General Plan Public Review Draft*). While the basin is compatible with surface parking lot use, zoning changes may be needed to site the equalization basin on this parcel.

The City currently charges a parking fee for use of the parking lot, which generates revenue for the City. In addition, acquiring the parking lot area for the basin would mean that the City would no longer pay a lease fee to Caltrans and therefore obtain greater net revenue from parking. In these ways, City staff would consider selection of this site as favorable from a revenue generation perspective.

The basin shown in Figure 5-7 assumes an inner diameter of approximately 100 feet. The parking lot has adequate room for construction and staging. To accommodate construction, however, the parking spaces would not be available for the duration of construction.

Adjacent Land Uses

This parcel is bounded by a bike path and Highway 1 to the northwest, by an open space area to the southwest, by the Pacifica Community Center to the southeast, and Crespi Drive to the northeast. The adjacent land uses are relatively favorable for construction and long-term operation compared to Site Alternatives 1A, 2A, and 2B due to the separation from permanently occupied structures. The closest residences and commercial structures are approximately 350 to 400 feet from the basin site. This distance would help to reduce perception of construction and long-term impacts to residents and privately owned structures. However, since the basin and facilities would be adjacent to the open space area, some additional precautions and biological surveys may be required during the construction period.

A significant portion of the parking lot at Site C1 would serve as the construction area. It is unknown at this time whether the remaining portion of the parking lot would need to be closed to reduce public risk and construction interference. This parking lot is heavily used, as it serves the skate park and the community center and also acts as overflow parking for beach access. Reduced parking space availability may be a short-term impact of the project during construction.

Parcel Ownership

The Sites 3A and 3B parcel is currently owned by Caltrans and leased by the City. Preliminary discussions and concept review with Caltrans representatives indicates that Caltrans is willing to sell the property to the City of Pacifica once departmental holds on the parcel are lifted. Caltrans staff review indicates that there are plaques within this parcel commemorating the site of the "Portola Expedition Camp" and the "Site of the Discovery of San Francisco Bay". There is also a statue on the site that was a gift from Catalonia, Spain to commemorate the explorer Don Gaspar de Portola. Caltrans staff have indicated that prior to removing the departmental hold, a more thorough survey of the parcel boundary must be completed as well as establishment of the ability of the State to transfer ownership and maintenance responsibilities of the plaques and statue to the City. If the plaques and statue are not able to be transferred to the City, the State would require an easement for continued maintenance of the plaques and statue. The overall acquisition schedule for the parcel is unknown at this time. Should the acquisition process become prolonged, it could

impact the ability of the City to meet its regulatory commitments regarding timing of the basin being available for operation.

It is unknown at this time whether Caltrans would bundle the sale of the parking lot with the open space area to the south of the parking lot. As shown in Figure 5-7, there is no parcel boundary between Highway 1 and the potential basin site to evaluate the size of the parcel. For planning purposes, however, the parking lot area and the open space area are estimated to be approximately the same size, and the total area is approximately 1.5 acres.

Geotechnical Considerations

Sites 3A and 3B are underlain by primarily marine terrace deposits with a cover layer of artificial fill. The fill composition and compaction is highly variable. The site has historically been a part of one or more coastal lagoons and/or sand dune deposits.

A geotechnical boring at Site 3 was not completed for this study but subsurface conditions are anticipated to be similar to Site 2 due to their proximity to one another.

Pipeline Connections

The pipeline alignments for Sites 3A and 3B would have similar attributes as described for Sites 2A and 2B, respectively, with regard to pipeline connections, given that the two basin sites have similar hydraulic and geographic locations. For Site 3A it would not be necessary to go under the open space area, which would be required for Site 2A. Site 3B requires some additional pipeline relative to Site 2B, routed between the skate park and the community center and below an existing play structure, to connect to the basin.

Coastal Commission Jurisdiction

The basin for Site Alternatives 3A and 3B are located east of Highway 1 and therefore may be considered removed from Coastal Commission jurisdiction. However, because this site is readily viewable from Highway 1, the Coastal Commission will probably try to exert jurisdiction from this perspective and could require a Coastal Development Permit. The design of the basin would allow the City to meet all probable conditions of the permit without major modification. The most significant impact to the project due to Coastal Commission permitting would be time and effort consulting with them.

For Site Alternative 3A, the diversion manhole and some pipeline work are west of Highway 1 and would require some coordination and potentially a permit from the Coastal Commission. Additional coordination with the Coastal Commission would be necessary to determine any permit requirements. The pipelines associated with Site 3B are located east of Highway 1 would are not expected to have the same permit requirements.

Ocean Impacts

As mentioned above, Site Alternatives 3A and 3B are located east of Highway 1. They are therefore considered protected from the effects of sea level rise and are anticipated to have reduced maintenance requirements due to salt and sand compared to Site 4. The influent pipelines to Site 3B are more protected from ocean impacts than the influent pipelines to Site 3A due to their inland location.

Flooding

This site is only partially within the 1% annual chance flood. City staff have not noted any previous flooding at this site. Less significant measures, compared to other sites, would likely be needed to reduce the risk of flooding the basin with stormwater. There are no apparent fatal flaws to protecting the basin from flooding at this site. The cost estimate for this site does not reflect a detailed cost associated with flood protection since there are multiple variables associated with providing this security but does include a placeholder of \$20,000.

Estimated Project Costs

The estimated project costs for Site Alternative 3A are presented in Table 5-9 and the estimate project costs for Site 3B are presented in Table 5-10. As can be seen in the tables, the estimated cost for this project is approximately \$17.9M (Site 3A) or \$18.3M (Site 3B) at the midpoint of construction (assumed to be June 2016). These costs include an allowance for groundwater treatment for the metals found in the Site 1A environmental boring that were not likely to have been leaked from the neighboring gas station. While pipeline unit costs are cheaper for Site 3B than Site 3A, the savings are offset by the trench plates assumed at this time to be necessary during construction, the longer overall length of the gravity diversion, as well as the road paving costs associated with the open trench method.

Basin & Site Summary						
	Tank Inner Diameter	100	Ft	Fill Depth	5	Ft
	Cutter Soil Mix Wall Thickness	30	Inch	Bay Mud/Peat Depth	15	Ft
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth	36	Ft
	Decking Thickness	8	Inch	Total Excavation Depth	56	Ft
	Girder Depth	4.5	Ft		1	
	Access Depth	7	Ft			
	Tipping Bucket Depth	2	Ft			
	Free Space Depth	1	Ft			
	Storage Depth	36	Ft			
	Foundation Thickness	5	Ft			
	Cutter Soil Mix Cutoff Wall Depth	10	Ft			
	1			I		
Project Element	Category	Sub-Category	Quantity	Unit	Unit Cost	Extended Cost
Basin Structure						
	Basin Walls					
	С	utter Soil Mix Wall	20,989	SF	\$ 20.00	\$ 419,780
	Shotcrete (w/Fib	er Reinforcement)	15.865	SF	\$ 12.45	\$ 197.520
	Welded Wire M	esh (6x6 - W4xW4)	159	CSF	\$ 78.50	\$ 12.454
		Smooth Finish	15 865	SE	\$ 0.75	\$ 11,899
	Concrete Base/Plug		,000			. 11,000
	concrete base/1 rug	Concrete/Rebar	1 513	CV	\$ 195.00	\$ 295.074
	Pasin Cover	concrete/nebai	1,515		\$ 195.00	\$ 235,074
	Basili Cover		222	C (¢ 050.00	ć 400 704
		Decking (Concrete)	222		\$ 850.00	\$ 188,721
	Decking (Rebar @ 205 lbs/0	Y concrete, FDOT)	45,515	LBS	\$ 1.10	\$ 50,067
	Precast/Prestressed I-Girders	(AASHTO Type IV)	796	LF	\$ 190.00	Ş 151,240
	Excavation					
		General	16,998	CY	\$ 70.00	\$ 1,189,880
	Anchoring					
	Tiedown Soil Anch	nors (10' on center)	0	EA	\$ 4,200.00	\$-
	Spoil Offhaul and Disposal:					
	Fill	(Assumes Class III)	2,554	TON	\$ 38.00	\$ 97,034
	Bay Mud/Peat	(Assumes Class II)	6,128	TON	\$ 47.00	\$ 288,038
	Native Soil	(Assumes Class III)	18,471	TON	\$ 38.00	\$ 701,879
	Elevated Equipment/Access Deck					
	Concrete Perimeter B	eams (2@12"x12")	12	CY	\$ 259.00	\$ 3.044
	Angle Sun	nort (4 5' @12' OC)	27	FA	\$ 927.00	\$ 25.029
	,	1 5" Alum Grating	1 257	SE	\$ 56.93	\$ 71.540
			602		¢ 162 E9	¢ 09.660
		C10x4.23 (2)	003		\$ 105.36 \$ 106.05	\$ 30,003
		Gualulali	200		\$ 100.95	ο ου,575
Subtotal						\$ 3,832,443
Basin Appurtenances						
P.P	Pumps		2	EA	\$ 53.000.00	\$ 106.000
	Controls		1	Allowance	\$ 80,000,00	\$ 80,000
	Standby Power		1	Allowance	\$ 150,000,00	\$ 150,000
	Foundation and Fencing		1	Allowance	\$ 64,000,00	\$ 64.000
	Washdown/10' of Header		21	FΔ	\$ 11 000 00	\$ 2/1 000
	Oder Centrel		31		÷ 11,000.00	γ 341,000
	Odor Control	Pod (2 025 of y 6 th)	1	Allowanco	¢ 100.000.00	ć 100.000
			T	Allowance	\$ 100,000.00	> 100,000
	Du Du	actwork and 2 Fans	1	Allowance	\$ 100,000.00	> 100,000
	iviiscellaneous Piping		1	Allowance	\$ 80,000.00	\$ 80,000
Subtotal						\$ 1,021,000

Pines						
ripes	Diversion Manhole	1	FΔ	\$ 10,000,00	¢	10.000
	Manhala	1		\$ 10,000.00	, ,	10,000
		4		\$ 10,000.00	Ş	40,000
	24" Diameter Gravity (Pilot Guided Augur Boring)	1,460		\$ 900.00	Ş	1,314,000
	Boring Pit	7	EA	\$ 100,000.00	Ş	700,000
	24" Diameter Gravity (Open Cut in Wet Sand)	40	LF	\$ 480.00	\$	19,200
	Interlocking Sheet Piles (15' deep)	1,200	SF	\$ 12.00	\$	14,400
	12" Diameter Force Main (Open Cut)	240	LF	\$ 240.00	\$	57,600
Subtotal					\$	2,155,200
Other						
	Dewatering (4 sump pumps and treatment)	1	Allowance	\$ 10,000.00	\$	10,000
	Contaminated Groundwater Treatment	1	Allowance	\$ 50,000,00	Ś	50,000
	Paving (Partial New Parking Lot (200'x140'))	3,111	SY	\$ 50.00	Ś	155 556
	Paving (Force main trench)	52	sv	\$ 50.00	ć	200,000
	Sidowalka		ST CE	\$ 50.00 \$ E 00	ې خ	2,007
		0	SF Alle	\$ 5.00	Ş	-
	Traffic Control	1	Allowance	\$ 53,000.00	\$	53,000
	Lot Improvements				Ι.	
	Install Turf	1	TSF	\$ 400.00	\$	400
	Shrubs (10' OC)	10	EA	\$ 50.00	\$	500
	Flood Protection Measures	1	Allowance	\$ 20,000.00	\$	20,000
	Utility Relocation	1	Allowance	\$ 500,000.00	\$	500,000
	Park and Ride Relocation	0	Allowance	\$ 100.000.00	Ś	-
		-		,	·	
Subtotal					¢	792 122
Subtotui					7	752,122
Construction Subtotal					ć	7 800 765
construction subtotal					7	7,000,705
Contractor Costs						
contractor costs	Mobilization/Demobilization		% of Const. Subtotal	5%	ć	300 038
	Contractory Demobilization		% of Const. Subtotal	150/	2	1 170 115
			% of Const. Subtotal	15%	Ş	1,170,115
	Change Order Allowance		% of Const. Subtotal	5%	Ş	390,038
Subtotal					\$	1,950,191
Professional Services						
	Environmental Documentation/Permitting	1	Allowance	\$ 350,000.00	\$	350,000
	Engineering		% of Const. Subtotal	10%	\$	780,077
	Legal		% of Const. Subtotal	2%	\$	156,015
	Construction Management		% of Const. Subtotal	10%	\$	780,077
	-				. 	•
Subtotal					\$	2,066,168
					l Í	,,-30
Design and Construction	Subtotal of Above				Ś	11.817.125
Contingency			% of Project Subtotal	25%	¢	2 924 281
contingency			, son roject Subtotal	2370	ļ ,	2,337,201
Subtatal					ć	11 771 100
Subiolui					د	14,771,406
Deal Estate Casta						
Real Estate Costs		53 000	65			a
	Property Acquisition	53,800	SF	\$ 40.00	Ş	2,152,000
	Property Sale	0	SF	\$ (40.00)	\$	-
Subtotal					\$	2,152,000
Total (10/2013 Dollars)	CCI = 9,689				\$	16,900,000
Total (6/2016 Dollars)	CCI = 10,238 (Projected)				\$	17,900,000

(Table 5-9 Continued)

Basin & Site Summary						
	Tank Inner Diameter	100	Ft	Fill Depth	5	Ft
	Cutter Soil Mix Wall Thickness	30	Inch	Bay Mud/Peat Depth	15	Ft
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth	36	Ft
	Decking Thickness	8	Inch	Total Excavation Depth	56	Ft
	Girder Depth	4.5	Ft		1	
	Access Depth	7	Ft			
	Tipping Bucket Depth	2	Ft			
	Free Space Depth	1	Ft			
	Storage Depth	36	Ft			
	Foundation Thickness	5	Ft			
	Cutter Soil Mix Cutoff Wall Depth	10	Ft			
	-	-				
Project Element	Category	Sub-Category	Quantity	Unit	Unit Cost	Extended Cost
Basin Structure		• 1				
	Basin Walls					
		utter Soil Mix Wall	20,989	SF	\$ 20.00	\$ 419,780
	Shotcrete (w/Fib	er Reinforcement)	15 865	SE	\$ 12.00	\$ 197 520
	Welded Wire M	esh (6x6 - W/AxW/A)	150	CSE	\$ 78.50	\$ 137,320
	Weided Wile Wi	Smooth Einish	15.965	CJF CE	\$ 78.30 \$ 0.75	\$ 12,434 \$ 11,900
	Concrete Pace /Pluz	SHOULIFILISH	13,605	JI	۰./5 پ	۲1,699 ç
	Concrete Base/Plug	C	4 540		ć 405.00	¢ 205.074
		Concrete/Rebar	1,513	CY	\$ 195.00	\$ 295,074
	Basin Cover					
	Е	Decking (Concrete)	222	CY	\$ 850.00	\$ 188,721
	Decking (Rebar @ 205 lbs/0	CY concrete, FDOT)	45,515	LBS	\$ 1.10	\$ 50,067
	Precast/Prestressed I-Girders	(AASHTO Type IV)	796	LF	\$ 190.00	\$ 151,240
	Excavation					
		General	16,998	CY	\$ 70.00	\$ 1,189,880
	Anchoring					
	Tiedown Soil Anch	ors (10' on center)	0	EA	\$ 4,200.00	\$-
	Spoil Offhaul and Disposal:					
	Fill	(Assumes Class III)	2,554	TON	\$ 38.00	\$ 97,034
	Bay Mud/Peat	(Assumes Class II)	6,128	TON	\$ 47.00	\$ 288,038
	Native Soil	(Assumes Class III)	18,471	TON	\$ 38.00	\$ 701,879
	Elevated Equipment/Access Deck	. ,				
	Concrete Perimeter B	eams (2@12"x12")	12	CY	\$ 259.00	\$ 3.044
	Angle Sup	port (4.5' @12' OC)	27	EA	\$ 927.00	\$ 25.029
		15" Alum Grating	1 257	SE	\$ 56.93	\$ 71 540
		C10v4 25 (2)	603	IF	\$ 163.58	\$ 98,669
		Guardrail	286	L. LE	\$ 106.05	ς <u>30,009</u> ς <u>30,575</u>
		Guararan	200	-	÷ 100.95	φ 30,373
Subtatal						ć 2022 112
Subtotui						\$ 5,052,445
Basin Annurtenances						
Dasin Appartenances	Rumps		2	FA	\$ 53,000,00	\$ 106.000
	Controls		2	Allowanco	\$ 90,000,00	\$ 100,000
	Conciols Standby Dowor		1	Allowance	÷ 1E0 000 00	→ 60,000
	Standby Power		1	Allowance	\$ 150,000.00	> 150,000
	Foundation and Fencing		1	Anowance	> 04,000.00	> 64,000
	washdown/10 of Header		31	EA	\$ 11,000.00	\$ 341,000
	Udor Control					
	Odor Control I	Bed (2,025 sf x 6 ft)	1	Allowance	\$ 100,000.00	\$ 100,000
	Du	uctwork and 2 Fans	1	Allowance	\$ 100,000.00	\$ 100,000
	Miscellaneous Piping		1	Allowance	\$ 80,000.00	\$ 80,000
Subtotal						\$ 1,021,000

Table 5-10: Tota	I Project	Costs for	Site	Alternative	3B
------------------	-----------	-----------	------	-------------	----

Pipes						
	Diversion Manhole	2	EA	\$ 10,000.00	\$	20,000
	Manhole	8	EA	\$ 10,000.00	\$	80,000
	24" Diameter Gravity (Pilot Guided Augur Boring)	150	LF	\$ 900.00	\$	135,000
	Boring Pit	2	EA	\$ 100,000.00	\$	200,000
	24" Diameter Gravity (Open Cut)	1.875	LF	\$ 480.00	Ś	900.000
	Interlocking Sheet Piles (12' deep)	45.000	SF	\$ 12.00	Ś	540.000
	12" Diameter Force Main (Open Cut)	240	LF	\$ 240.00	Ś	57.600
			-		1	,
Subtotal					\$	1,932,600
Other						
	Dewatering (4 sump pumps and treatment)	1	Allowance	\$ 10,000.00	\$	10,000
	Contaminated Groundwater Treatment	1	Allowance	\$ 50,000.00	\$	50,000
	Paving (Partial New Parking Lot (200'x140'))	3.111	SY	\$ 50.00	Ś	155.556
	Paving (Force main trench)	53	SY	\$ 50.00	Ś	2.667
	Paving (Street and Skate Park Lot))	8 978	SY	\$ 50.00	Ś	448,889
	Sidewalks	0	SE	\$ 5.00	¢	-10,005
	Traffic Control	1	Allowance	\$ 53,000,00	ć	53 000
		1	Allowallce	\$ 55,000.00	Ş	55,000
	Lot Improvements					
	Install Turf	1	TSF	\$ 400.00	ć	100
	Shruha (10) OC	10	EA	¢ E0.00	ې د	400
	Sillubs (10 OC)	10		\$ 30,000,00	ې د	20.000
	Flood Protection Measures	1	Allowance	\$ 20,000.00	Ş	20,000
	Utility Relocation	1	Allowance	\$ 500,000.00	Ş	500,000
	Park and Ride Relocation	0	Allowance	\$ 100,000.00	Ş	-
Subtotal					\$	1,241,011
					ć	0.007.054
Construction Subtotal					Ş	8,027,054
Contractor Costs						
	Mobilization/Demobilization		% of Const. Subtotal	5%	\$	401,353
	Contractor Overhead and Profit		% of Const. Subtotal	15%	\$	1,204,058
	Change Order Allowance		% of Const. Subtotal	5%	\$	401,353
Subtotal					\$	2,006,763
Professional Services						
	Environmental Documentation/Permitting	1	Allowance	\$ 350,000.00	\$	350,000
	Engineering		% of Const. Subtotal	10%	\$	802,705
	Legal		% of Const. Subtotal	2%	\$	160,541
	Construction Management		% of Const. Subtotal	10%	\$	802,705
					·	,
Subtotal					\$	2,115,952
					[′]	, -,
Design and Construction	Subtotal of Above				\$	12,149,769
Contingency			% of Project Subtotal	25%	\$	3,037,442
с <i>,</i>					·	
Subtotal					\$	15,187,212
Real Estate Costs						
	Property Acquisition	53,800	SF	\$ 40.00	\$	2,152,000
	Property Sale	0	SF	\$ (40.00)	Ś	-
		5		(10100)	⁺	
Subtotal					Ś	2.152.000
					l Í	,,000
Total (10/2013 Dollars)	CCI = 9,689				\$	17,300,000
Total (6/2016 Dollars)	CCI = 10,238 (Projected)				\$	18,300,000

5.4 Site 4: Linda Mar Pump Station

Site Introduction

The Site Alternative 4 (formerly known as Site D) basin and potential pipeline alignment are shown in Figure 5-8. As can be seen, the site is located at the Linda Mar Pump Station. It is the closest site to the beach being considered in this chapter. Table 5-11 summarizes some of the infrastructure characteristics proposed for this site. The sections below summarize some key physical parameters of Site 4.

Parameter	Dimension
Basin Inner Diameter	100 feet
Depth from Ground to: Maximum Water Surface Basin Floor	15 feet 51 feet
Gravity Pipeline Length/Diameter	200 feet/24 inches
Force main Length/Diameter	100 feet (including vertical pump discharge)/12 inches
Basin Drainage Time/Flow Rate	30 hours/1.7 mgd

Table 5-11: Site Alternative 4 Infrastructure Dimensions and Rates

The basin drainage time assumes a discharge to the existing 12-inch sewer within the Linda Mar Pump Station parcel. Modeling indicates that there is approximately 1.7 mgd capacity available within the existing sewer without causing surcharging and a backwater condition upstream. If 2.1 mgd were to be discharged to the sewer (to drain the basin within 24 hours) surcharge and backwater would be expected but overflows would not be expected. Further field surveys are recommended to confirm the actual capacity and horizontal alignment of the pipeline. Addressing the hydraulic capacity limitation is anticipated to be costly to correct as it likely involves additional pipe replacement for beachfront sewer between Crespi Dr. and the Linda Mar Pump Station. It would also require consultation with and potential permit requirements from the Coastal Commission to obtain more rapid drain times.

Figure 5-8: Potential Basin Location and Pipeline Alignment at Site Alternative 4

Construction for Site Alternative 4 is estimated to be complete by the end of June 2019. This is six months after the RWQCB deadline.

Size and Suitability

This site currently functions as a parking lot providing access to the pump station and beach. This type of use is compatible with the post project site condition so there does not appear to be any long-term conflict with the current use. This parcel is zoned as a site for public facilities and is identified as beach/commuter parking in the latest projection of land use for the Pacifica General Plan Update (*General Plan Public Review Draft*). It appears therefore that there should not be any conflict with planned future uses either.

Some of the parking spaces may be eliminated due to surface features, but overall the City does not believe there would be revenue generation implications due to selection of this site as the preferred basin location.

The basin shown in Figure 5-8 assumes an inner diameter of approximately 100 feet. The parking lot has adequate room for construction and staging. It is unknown at this time whether additional parking would need to be made available since there appear to be numerous parking spaces available for beach access. This construction impact would be evaluated during the environmental documentation phase of the project to determine appropriate mitigation.

Adjacent Land Uses

Site Alternative 4 is bounded by the Linda Mar Pump Station to the southwest, the beach to the northwest, an adjacent parking lot to the northeast, and Highway 1 to the southeast. There is a Taco Bell restaurant approximately 50 feet to 100 feet from the basin site. However, there are no residences within about 160 feet. This makes the adjacent land uses relatively good compared to Site Alternatives 1A, 2A, and 2B but not as favorable as Sites 3A and 3B. It is anticipated that the entire pump station area would be closed to public access during construction to facilitate construction and reduce risk to the public.

A significant portion of the parking lot at Site 4 would serve as the construction area. It is unknown at this time whether the remaining portion of the parking lot would need to be closed to reduce public risk and construction interference. This parking lot is heavily used as it is parking for beach users. It is anticipated that parking lost during construction would likely be absorbed by other existing parking areas, decreasing the total number of parking spaces in the area.

Parcel Ownership

This site is owned by the City of Pacifica and therefore would avoid the cost of land purchase. The City is willing to allow siting of the basin on this parcel.

Geotechnical Considerations

Site Alternative 4 is underlain by primarily sand dune deposits with a cover layer of artificial fill. The sand dune deposits consist predominately of loose medium-to coarse-grained sand and may also include gravel and cobbles. The depth of the deposits are reported to be typically less than 19 feet. Site 4 was likely located on the sand dune that separated the coastal lagoon from the Pacific Ocean.

A geotechnical boring at Site Alternative 4 was completed for this study. Table 5-12 summarizes the soil encountered by this boring.

Based on the condition of the existing pavement by the pump station, it appears that about 2 inches of differential settlement has occurred at this site. The settlement could be the result of densification of the retaining wall backfill, fill induced consolidation of underlying clays, and/or peat decomposition. The composition of the fill and this differential settlement indicates that some additional stabilization of the surface soils in the area may be required for construction at this site to occur.

Depth	Encountered
0" – 3"	Asphaltic concrete
3" – 7'	Fill consisting of clayey sand and graveland silty gravel with sand and cobbles. Fill was dry to moist and medium dense to dense
7' – 9'	Sandy clay
9' – 17'	Dense poorly-graded sand (i.e. old sand dune)
17' – 23'	Medium stiff peat with organic silt and clay
	Interlayered deposits of: • Medium stiff to stiff clays
23' – 76.5'	 Medium dense to dense clayey/silty sand with gravel

Table 5-12: Site Alternative 4 Soil Condition Based on Geotechnical Boring

Groundwater level was not available from the boring due to the drilling method, but it was noted that the moist soils were encountered at about 8 feet depth. City staff reported that groundwater flowed through the pump station basement during a repair, indicating that the groundwater level is above the base of the pump station basement. Groundwater levels are expected to vary seasonally and may also be influenced by tidal fluctuations.

Pipeline Connections

Pipeline connections for Site Alternative 4 are relatively less complex compared to Site Alternatives 2A, 2B, 3A, and 3B. The diversion manhole would be similar to the diversion manhole of Site Alternatives 2A and 3A, and the diversion pipeline would need to cross several major storm drains and sewers near the diversion point. Relocation of the conflicting pipelines or wetwell work to avoid pipelines are options, but a lower cost option may be for the diversion pipeline to parallel the storm and sewer pipelines at a steep grade for a short distance and then make the turn towards the basin sites. The diversion pipeline connection for Site Alternative 4 does not however need to cross Highway 1, thus avoiding a Caltrans permit and casing.

The discharge force main would connect the submersible pump within the basin to the gravity sewer onsite just upstream of the Linda Mar Pump Station. It is assumed at this time that an additional penetration could be made in an existing manhole to create this connection. This will need to be confirmed during design.

Coastal Commission Jurisdiction

Although Site 4 is owned by the City, a significant consideration for selection of this site is the oversight that the Coastal Commission has west of Highway 1. Preliminary discussions with Coastal Commission staff have indicated that should a permit be required, there would be some permit conditions related to placement and appearance of the controls building as well as construction BMPs. Coastal commission staff have also suggested that this project may qualify for a waiver. However, the time needed to obtain a waiver can be significant and could significantly impact the project schedule. As no formal consultation has been performed, however, it is unknown what specific permit conditions would be required.

Ocean Impacts

Site Alternative 4 is located west of Highway 1. It is therefore considered exposed to the effects of sea level rise and is anticipated to have relatively more maintenance requirements due to salt and sand than the other three sites. It is also much more likely that the City would need to replace this facility in the future

due to coastal erosion. The present worth cost of replacement at an alternative site in the future is estimated to be approximately \$6M.

Flooding

This site is within the 1% annual chance flood with additional wave hazards. Additionally, City staff have noted previous flooding at this site. To reduce the risk of flooding the basin with stormwater, it would be necessary to raise the access points, create a berm around the completely buried basin, or include some other flood protection measure. The flood depth varies based on the design flood event. It should be noted that raising the basin or creating some type of flood barrier around the basin could make obtaining a Coastal Commission permit more difficult. Whether these flood protection measures would be a fatal flaw from the perspective of the Coastal Commission or what mitigation measures would be required from the Coastal Commission are unknown. The cost estimate for this site does not reflect a detailed cost associated with flood protection since there are multiple variables associated with providing this security but does include a placeholder of \$100,000. The permitting allowance is also raised to reflect the additional permitting complexity.

Estimated Project Costs

The estimated project costs for Site Alternative 4 are presented in Table 5-13. As can be seen in the table, the estimated cost for this project is approximately \$18.1M at the midpoint of construction (assumed to be June 2016). These costs include an allowance for groundwater treatment for the metals found in the Site 1A environmental boring that were not likely to have been leaked from the neighboring gas station.

Basin & Site Summary								
	Tank Inner Diameter	100	Ft	Fill Depth		7	Ft	
	Cutter Soil Mix Wall Thickness	30	Inch	Bay Mud/Peat Depth		10	Ft	
	Shotcrete Wall Thickness	12	Inch	Native Soil Depth		39	Ft	
	Decking Thickness	8	Inch	Total Excavation Depth		56	Ft	
	Girder Depth	4.5	Ft					
	Access Depth	7	Ft					
	Tipping Bucket Depth	2	Ft					
	Free Space Depth	1	Ft					
	Storage Depth	36	Ft					
	Foundation Thickness	5	Ft					
	Cutter Soil Mix Cutoff Wall Depth	10	Ft					
Project Element	Category	Sub-Category	Quantity	Unit	ι	Jnit Cost	Ex	tended Cost
Basin Structure								
	Basin Walls							
		Cutter Soil Mix Wall	20,989	SF	\$	20.00	\$	419,780
	Shotcrete (w/F	iber Reinforcement)	15,865	SF	\$	12.45	\$	197,520
	Welded Wire	Mesh (6x6 - W4xW4)	159	CSF	\$	78.50	\$	12,454
		Smooth Finish	15,865	SF	\$	0.75	\$	11,899
	Concrete Base/Plug				Ľ			,
		Concrete/Rebar	1,513	CY	\$	195.00	\$	295,074
	Basin Cover				·			
		Decking (Concrete)	222	СҮ	Ś	850.00	Ś	188.721
	Decking (Rebar @ 205 lbs	/CY concrete. FDOT)	45.515	LBS	Ś	1.10	Ś	50.067
	Precast/Prestressed I-Girde	rs (AASHTO Type IV)	796	LF	Ś	190.00	Ś	151.240
	Excavation				·		·	-, -
		General	16.998	СҮ	Ś	70.00	Ś	1.189.880
	Anchoring		-,		·		·	,,
	Tiedown Soil An	chors (10' on center)	0	EA	Ś	4.200.00	Ś	-
	Spoil Offhaul and Disposal:	, , , , , , , , , , , , , , , , , , ,			·			
	Fi	II (Assumes Class III)	3,575	TON	\$	38.00	\$	135,848
	Bay Mud/Pe	at (Assumes Class II)	4.086	TON	Ś	47.00	Ś	192.025
	Native So	il (Assumes Class III)	20,003	TON	\$	38.00	\$	760,100
	Elevated Equipment/Access Deck	,			·			
	Concrete Perimeter	Beams (2@12"x12")	12	СҮ	\$	259.00	\$	3,044
	Angle Su	upport (4.5' @12' OC)	27	FA	Ś	927.00	Ś	25.029
		1.5" Alum. Grating (4	1,257	SF	\$	56.93	\$	71,540
		C10x4.25(2)	603	LF	Ś	163.58	Ś	98,669
		Guardrail	286	LF	\$	106.95	\$	30.575
					·		[']	,
Subtotal							\$	3,833,464
Basin Appurtenances								
	Pumps		2	EA	\$	53,000.00	\$	106.000
	Controls		1	Allowance	\$	80,000.00	\$	80.000
	Standby Power		1	Allowance	Ś	150,000.00	\$	150.000
	Foundation and Fencing		1	Allowance	\$	64,000.00	\$	64.000
	Washdown/10' of Header		31	EA	Ś	11,000,00	Ś	341 000
	Odor Control		51			11,000.00	ľ	541,000
	Odor Contro	Bed (2.025 sf x 6 ft)	1	Allowance	Ś	100.000 00	Ś	100 000
		Ductwork and 2 Fans	1	Allowance	Ś	100.000.00	Ś	100,000
	Miscellaneous Pining	2 3 5 C W O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K O I K	1	Allowance	Ś	80 000 00	Ś	80,000
			-		*	00,000.00	ľ	00,000
Subtotal							\$	1,021,000

Table 5-13: Total Project Costs for Site Alternative 4

rips Diversion Machaie Machaie 1 FA 5 1000000 5 100000 Machaie Simple	Dimen							
Diversion Mambele 1 EA 5 20,000,00 5 10,000 2P Diameter Gravity (Piot Guided Augur Boring) 0 LF S 200,000,00 5 . 2P Diameter Gravity (Open Cut in Wet Sand) 0 LF S 200,000,00 5 . . 2P Diameter Gravity (Open Cut in Wet Sand) 0 LF S 200,000,00 5 . 1,000,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00 5 . 1,200,000,00,00,00,00,00,00,00,00,00,00,0	Pipes							
Marchole 1 EA \$ 10,000,00 \$ 10,000,00 \$ 10,000,00 \$ 24" Diameter Gravity (Oper Cut in Wet Sand) 0 EA \$ \$ \$ 24" Diameter Gravity (Oper Cut in Wet Sand) 0 EA \$		Diversion Manhole	1	EA	\$ 10,	000.00	\$	10,000
24* Diameter Gravity (Pine Guided Augur Boring) 0 LF \$ 9 00000 \$ 24* Diameter Gravity (Open Cut in Wet Sand) 200 LF \$ 44000 \$ 5 572.000 12* Diameter Force Main (Open Cut) 60 LF \$ 24000 \$ 72.000 Subinital Dewatering (4 sump pumps and treatment) 1 Allowance \$ 50.0000 \$ 5 0.0000 \$ 5 0.0000 \$ 7.00000 \$ 7.00000 \$ 7.00000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.0000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.0000000 \$ 7.0000000 <td< td=""><td></td><td>Manhole</td><td>1</td><td>EA</td><td>\$ 10,</td><td>000.00</td><td>\$</td><td>10,000</td></td<>		Manhole	1	EA	\$ 10,	000.00	\$	10,000
Borning Pit 24" Diameter Saroly (Open Cut in Wet Sand) Interfooking State Pilles (15 deep) 12" Diameter Force Main (Open Cut) 0 EA 5 1000000 5 5 200000 5 5 2000000 5 5 2000000000000000000000000000000000000		24" Diameter Gravity (Pilot Guided Augur Boring)	0	LF	\$	900.00	\$	-
24 ⁺ Diameter Gravity (Open Cut in Wet Sand) Interlooking Sheer Pirs (3) Selex Pirs (4)		Boring Pit	0	EA	\$ 100.	000.00	Ś	-
introducing Sheet Place (15' deep) 6.000 SP 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 1.2.00 5 2.2.02.00 5 2.2.02.00 5 2.2.02.00 5 2.2.02.00 5 2.2.02.00 5 2.2.02.00 5 2.2.02.00 5 2.2.00 5		24" Diameter Gravity (Open Cut in Wet Sand)	200	IF	Ś	480.00	Ś	96,000
Interfording sheet ring (a bueb) Bodo ar b 2 200 5 2 200 5 1 200 Subtotal Contaminate Groundwater Treatment) 1 Allowance 5 3 00000 5 3 00000 5 3 00000 5 3 00000 5 3 00000 5 3 00000 5 3 00000 5 3 00000 5 3		Interledving Cheet Diles (15' deen)	6.000		¢ ¢	12.00	¢ č	72,000
L2 Diameter Force Main (Open Out) 60 D* 5 24000 5 14.400 Subtotal S 202.400 S 202.400 Other Dewatering (4 sump pumps and treatment) Contaminate d coundwater Treatment 1 Allowance S 5.0000 S 5.0000 S 70.0500 S <td></td> <td>Interlocking Sheet Piles (15 deep)</td> <td>6,000</td> <td>SF</td> <td>Ş</td> <td>12.00</td> <td>Ş</td> <td>72,000</td>		Interlocking Sheet Piles (15 deep)	6,000	SF	Ş	12.00	Ş	72,000
Subtotal		12" Diameter Force Main (Open Cut)	60	LF	Ş	240.00	Ş	14,400
Subtratri Subtratri <thsubratri< th=""> Subtratri <ths< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ths<></thsubratri<>								
Other Dewatering (4 sump pumps and treatment) Containated Groundwater Treatment) Containated Groundwater Treatment Paving (Brain Diameter + 20 buffer) Paving (Brain Diameter + 20 buffer) Paving (Brain Diameter + 20 buffer) Paving (Brain Diameter + 20 buffer) Sidewalks 1 1,08 20 20 25 Y Allowance 25 5,000 5 5,000 5 1,000 20 20 20 20 20 20 20 20 20 20 20 20	Subtotal						\$	202,400
Other Dewatering (4 sump pumps and treatment) Contaminated Groundwater Treatment. Allowance S 10.000 SUBwance S 10.0000 SUBwance S 10.0000 SUBwance S 10.0000 SUBwance S 10.0000 SUBwance S 10.0000 SUBwance S 10.00000 SUBwance S 10.00000 SUBwance S 10.00000 SUBwance S 10.00000 SUBwance S 10.00000 S S S 10.0000 S S 10.0000 S S S 10.0000 S S 10.0000 S S S 10.000 S S								
Dewatering (4 sum pumps and treatment) Contaminated Goundwater (reatment) Paving (Basin Diameter + 20' buffer) Paving (Basin Diameter + 20' buffer) Paving (Force main trench) 1 Allowance 5 10,000.00 5 0.000.00 </td <td>Other</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Other							
Contaminated Groundwater Treatment 1 Allowance \$ 50,0000 \$ 50,0000 Paving (Fore main trench) 1,408 SY \$ 50,000 \$ 70,377 Sidewals 0 SF \$ 50,000 \$ 70,377 Traffic Control 0 SF \$ 50,000 \$ Lot Improvements Install Turf 1 TSF \$ 400,000 \$ 20,0000 \$ 20,0000 \$ 20,0000 \$ 20,0000 \$ Flood Protection Measures Install Turf 1 TSF \$ 400,0000 \$ 100,0000 \$ 100,0000 \$ 500,0000		Dewatering (4 sump numps and treatment)	1	Allowance	\$ 10	000 00	Ś	10 000
Paving (Basin Diameter + 20 buffer) Paving (Force main trench) Sidewaiks 1,408 20 SY 5 50.00 5 5 70,375 5 200 SY 5 50.00 5 70,375 5 5 50.00 5 70,375 7 5 50.00 5 70,375 7 7 <td></td> <td>Contaminated Groundwater Treatment</td> <td>1</td> <td>Allowance</td> <td>\$ 50</td> <td>000.00</td> <td>Ś</td> <td>50,000</td>		Contaminated Groundwater Treatment	1	Allowance	\$ 50	000.00	Ś	50,000
India (1) Andor Sidewalks 3		Daving (Pasin Diameter + 20' huffer)	1 109	cv	¢ 50,	E0.00	č	70 276
Payming (rofer main french) 200 SY 5 5.000 5 Sidewalks 0 Allowance S S S.000 S Traffic Control 0 Allowance S S.300.00 S Lot Improvements Install Turf 1 TSF S 400.000 S 400.000 S 2.000 Profection Measures Install Turf 1 Allowance S 100.000.00 S 2.000 S 2.000 S S 300.000.00 S S S		Paving (Basin Diameter + 20 burier)	1,408	ST	Ş	50.00	Ş	70,376
Sidewalks 0 SF 5 5.00 5 5.00 5 5.0000 5 - Traffic Control Lut Improvements Install Turf 1 TSF 5 3.0000 5 .0000 5 .0000 5 .0000 5 .00000 5 .00000 5 .000000 5 .209.000 5 .209.000 5 .209.000 5 .209.000 5 .209.000 5 .209.000 5 .209.000 5 .209.000 </td <td></td> <td>Paving (Force main trench)</td> <td>20</td> <td>SY</td> <td>\$</td> <td>50.00</td> <td>\$</td> <td>1,000</td>		Paving (Force main trench)	20	SY	\$	50.00	\$	1,000
Install Turf 0 Allowance 5 5.3,000.00 5 Lot Improvements Install Turf 1 TSF 5 400.00 5 200 Flood Protection Measures 1 Allowance 5 100,000.00 5 100,000.00 5 100,000.00 5 300,000.00 5 300,000.00 5 - 5 5 7.00 7.00 Allowance 5 100,000.00 5 - 5 - 5 7.00 7.00 Allowance 5 100,000.00 5 - - 5 7.37,76 Subtotal - - - - 5 5.790,640 - 5 5.790,640 - 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,532 5 289,5		Sidewalks	0	SF	Ş	5.00	Ş	-
Install Tur' Shrubs (5' OC) TSF S 400,00 S 2,000 S 1,00,000 S 1,00,000 S 5,00,000 S 2,00,000 S 2,00,000 <td></td> <td>Traffic Control</td> <td>0</td> <td>Allowance</td> <td>\$ 53,</td> <td>000.00</td> <td>\$</td> <td>-</td>		Traffic Control	0	Allowance	\$ 53,	000.00	\$	-
Instal Turf 1 TSF 5 4000 5 5000 5 0000 5 0000 5 000000 5 00000000 5 00000000 5 000000000000000000000000000000000000		Lot Improvements						
Shrubs (5' OC) 40 CA 5 5000 5 2000 Piod Protection Measures Utility Relocation Park and Ride Relocation and Acquisition 1 Allowance 5 100,0000 5 500,0000 5 500,0000 5 500,0000 5 500,0000 5 500,0000 5 500,0000 5 5 500,0000 5 5 500,0000 5 500,0000 5 500,0000 5 5 500,0000 5 </td <td></td> <td>Install Turf</td> <td>1</td> <td>TSF</td> <td>\$</td> <td>400.00</td> <td>\$</td> <td>400</td>		Install Turf	1	TSF	\$	400.00	\$	400
Flood Protection Measures 1 Allowance 5 100,000 5 100,000 Utility Relocation 1 Allowance \$ 500,000,00 \$ 500,000 \$ 500,000 \$ 500,000 \$ 500,000 \$ 500,000 \$ \$ 500,000 \$ \$ 500,000 \$ \$ 500,000 \$ \$ \$ \$ 500,000 \$		Shruhs (5' OC)	40	FA	Ś	50.00	Ś	2 000
index Protection measures 1 Allowance 5 100,0000 5 500,000 5 5,000,000 5 5,000,000 5 5,000,000 5 5,000,000 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 2,29,532 5 <		Elood Protection Measures	1	Allowance	¢ 100	000.00	¢	100 000
Dillity relocation 1 Allowance 5 3.00,0000 5 5.00,0000 5 5.00,0000 5 5.00,0000 5 7.00			1	Allowalice	\$ 100,	000.00	ې د	100,000
Park and Ride Relocation 0 Allowance \$ 100,000,00 \$ Subtotal 0 Allowance \$ 100,000,00 \$ \$ \$ \$ \$ \$ \$		Utility Relocation	1	Allowance	\$ 500,	000.00	Ş	500,000
Land Acquisition 0 Allowance 5 - 5 - 5 733,776 Subtotal Construction Subtotal Mobilization/Demobilization Contractor Costs Mobilization/Demobilization Contractor Overhead and Profit Contractor Overhead and Profit Contra		Park and Ride Relocation	0	Allowance	\$ 100,	000.00	\$	-
Subtotul Subtotul S 733,776 Construction Subtotal Image: Signame Signam		Land Acquisition	0	Allowance	\$	-	\$	-
Subtotal S 733,776 Construction Subtotal Construction Subtotal Construction Subtotal S 5,790,640 Constructor Costs Mobilization/Demobilization Contractor Overhead and Profit Contractor Overhead and Profit Contractor Overhead and Profit % of Const. Subtotal % of Const. Subtotal 5% \$ 2289,532 Subtotal Forfessional Services Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Const. Subtotal \$ 400,000, 10% \$ 400,000, 579,064 \$ 400,000,579,064 \$ 400,000,579,064 \$ 400,000,579,064 \$								
Construction Subtotal Construction Subtotal Mobilization/Demobilization Software So	Subtotal						Ś	733.776
Construction Subtotal Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal 5% \$ \$ 289,532 \$ Subtotal Environmental Documentation/Permitting Legal Construction Management 1 Allowance \$ 400,000,00 \$ \$ \$ \$ 400,000,00 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ <							<i>'</i>	, -
Contractor Costs Mobilization/Demobilization % of Const. Subtotal 5% \$ 289,532 Subtotal Fregenering 1 Allowance \$ 400,0000 \$ 400,0000 \$ 400,000 \$ 400,000 \$ 400,000 \$ 400,000 \$ 400,000 \$ 400,000 \$ \$ 757,064 \$ 579,064 \$ 579,064 \$ \$ 579,064 \$ \$ 579,064 \$ \$ 759,064 \$	Construction Subtatal						ć	F 700 640
Contractor Costs Mobilization/Demobilization Contractor Overhead and Profit Change Order Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal 5% % \$ \$ 289,532 868,956 \$ Subtotal Forfessional Services Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance \$ 400,000 10% \$ 400,000 400,000 \$ \$ 759,064 Subtotal Subtotal % of Const. Subtotal % of Const. Subtotal \$ 400,000 400,000 \$ \$ 400,000 400,000 \$ \$ 759,064 Subtotal Subtotal of Above Construction % of Const. Subtotal % of Project Subtotal \$ \$ 8,991,241 Design and Construction Subtotal Subtotal of Above S \$ 900 \$ \$ 910,400 \$ \$ 9,912,441 Design and Construction Subtotal Subtotal of Above S \$ \$ 910,400 \$ \$ 910,400 \$ \$ 9,912,441 \$ \$	Construction Subtotal						>	5,790,640
Contractor Costs: Mobilization/Demobilization % of Const. Subtotal % of Const. Subtotal 5% \$ 289,532 368,596								
Mobilization/Demobilization % of Const. Subtotal 5% \$ 228,532 Contractor Overhead and Profit % of Const. Subtotal 15% \$ 368,596 Subtotal % of Const. Subtotal 5% \$ 1,447,660 Professional Services Environmental Documentation/Permitting 1 Allowance \$ 400,000.00 \$ 400,000.00 \$ 579,064 Legal Construction Management % of Const. Subtotal \$ 400,000.00 \$ 400,000.00 \$ 579,064 Subtotal Subtotal % of Const. Subtotal \$ 400,000.00 \$ 400,000.00 \$ 400,000.00 \$ 400,000.00 \$ 400,000.00 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 1,673,941 \$ 579,064 \$ 1,673,941 \$ 579,064 \$ 1,673,941 \$ 25% \$ 1,673,941 \$ 25% \$ 1,170,000 \$ 1,174,000 \$ 1,174,000 \$ 1,673,941 \$ 2,228,060 \$ 1,174,0302 \$ 1,273,941 \$ 2,228,060 \$ 1,174,0302 \$ 1,673,941 \$ 2,5% \$ 1,174,0302 \$ 1,140,302 \$ 1,140,302 \$ 1,140,302 \$ 1,1140,302 \$ 1,140,302 <	Contractor Costs							
Contractor Overhead and Profit Change Order Allowance % of Const. Subtotal % of Const. Subtotal 15% \$ 368,596 Subtotal Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Const. Subtotal \$ 400,000. \$ \$ 579,064. \$ \$ 579,064. \$ \$ 579,064. \$ \$ 579,064. \$ \$ \$ 3,673,941. \$ \$ 3,673,941. \$ \$ 3,673,941. \$ \$ 2,728,800. \$ \$ 2,228,000. \$ \$ 1,140,302. \$ \$ 1,140,302. \$ \$ 1,140,302. \$ \$ <		Mobilization/Demobilization		% of Const. Subtotal	5%		\$	289,532
Change Order Allowance % of Const. Subtotal 5% \$ 2289;532 Subtotal Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Co		Contractor Overhead and Profit		% of Const. Subtotal	15%	Ś	\$	868,596
Subtotal Intercention		Change Order Allowance		% of Const. Subtotal	5%		Ś	289.532
Subtotal Subtotal \$ 1,447,660 Professional Services Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Project Subtotal \$ 400,000, \$ \$ 400,000, \$ \$ Design and Construction Management 1 Allowance % of Project Subtotal \$ 10% \$ \$ 1,673,941 Design and Construction Subtotal Subtotal of Above * % of Project Subtotal \$ \$ 8,912,241 Contingency Subtotal of Above * % of Project Subtotal 25% \$ 8,912,241 Subtotal Subtotal Subtotal of Above * % of Project Subtotal 25% \$ 9,912,241 \$ 2,228,8000 \$ 1,1,140,302 \$ 1,1,140,302 \$ \$ 1,1,140,302 \$ \$ 1,1,140,302 \$ \$ 1,1,140,302 \$ \$ 1,1,140,302 \$ \$ 1,1,140,302 \$ \$ 1,1,140,302 \$, Y	200,002
SubtotalEnvironmental Documentation/Permitting Engineering Legal Construction Management1Allowance % of Const. Subtotal % of Project Subtotal\$400,000 400,000 400,000 2% \$\$400,000 400,000 400,000 2% \$\$400,000 400,000 400,000 2% \$\$400,000 400,000 400,000 2% \$\$400,000 400,000 400,000 2% \$\$400,000 400,000 400,000 2% \$\$\$400,000 400,000 2% \$\$400,000 400,000 2% \$\$400,000 400,000 2% \$\$400,000 400,000 \$\$\$400,000 400,000 \$\$\$400,000 400,000 \$\$\$400,000 400,000 \$\$\$400,000 400,000\$\$\$400,000 400,000\$\$\$\$400,000 400,000\$\$\$\$\$400,000 400,000\$\$\$\$400,000 400,000\$	6 1							4 447 660
Professional Services Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Const. Subtotal % of Const. Subtotal \$ 400,000, 10% % of Const. Subtotal % of Const. Subtotal \$ 400,000,0 10% % of Second 2% \$ 400,000,0 10% % of Const. Subtotal % of Const. Subtotal \$ 400,000,00 % of Const. Subtotal 2% \$ 400,000,00 % of Const. Subtotal \$ 1,673,941 Design and Construction Contingency Subtotal of Above Subtotal % of Project Subtotal \$ 25% \$ 2,228,060 Subtotal Property Acquisition Property Sale O 00 SF \$ 400,000,00 \$ 1,140,302 Subtotal Property Acquisition Property Sale O 00 SF \$ 400,000,00,00 \$ 2,028,060 Subtotal Property Acquisition Property Sale O 0 SF \$ 40,000,000,00 \$ 3,000,000 Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00	Subtotal						Ş	1,447,660
Professional Services Environmental Documentation/Permitting 1 Allowance \$ 400,000,00 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 579,064 \$ 11,58,33 \$ 10,673,941 \$ 579,064 \$ 1,673,941 \$ 579,064 \$ 579,064 \$ 579,064 \$ 5,22,28,060 \$ 5,22,228,060 \$ 5,22,228,060 \$ 5,22,228,060 \$ 5,22,228,060 \$ 5,22,228,060 \$ 5,22,228,060 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,40,000,00 \$ 5,960,000,00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Environmental Documentation/Permitting Engineering Legal Construction Management 1 Allowance % of Const. Subtotal % of Project Subtotal \$ 400,000 \$ Design and Construction Contingency Subtotal of Above \$ 10% \$ \$ 1,673,941 Design and Construction Contingency Subtotal of Above \$ \$ 1,673,941 \$ \$ \$ 8,912,241 Subtotal \$ Subtotal of Above \$ \$ \$ 8,912,241 \$	Professional Services							
Engineering Legal Construction Management % of Const. Subtotal % of Const. Subtotal 10% \$ 579,064 Subtotal % of Const. Subtotal % of Const. Subtotal 10% \$ \$ 115,813 Design and Construction Contingency Subtotal of Above % of Project Subtotal \$ \$ 8,912,241 Subtotal % of Project Subtotal % of Project Subtotal \$ \$ 8,912,241 Subtotal % of Project Subtotal % of Project Subtotal \$ \$ 8,912,241 Subtotal % of Project Subtotal \$ \$ \$ \$ \$ Subtotal Property Acquisition Property Sale 0 SF \$ \$ \$ \$ \$ Subtotal Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$		Environmental Documentation/Permitting	1	Allowance	\$ 400,	000.00	\$	400,000
Legal Construction Management % of Const. Subtotal % of Const. Subtotal 2% 2% \$ 115,813 579,064 Subtotal Subtotal Subtotal 10% \$ 579,064 Design and Construction Contingency Subtotal of Above % of Project Subtotal \$ 1,673,941 Design and Construction Subtotal Subtotal of Above % of Project Subtotal 25% \$ 8,912,241 Real Estate Costs Property Acquisition Property Sale 0 SF \$ 40.00 \$ 11,140,302 Subtotal Property Acquisition Property Sale 0 SF \$ 40.00 \$ - Subtotal Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00		Engineering		% of Const. Subtotal	10%	Ś	Ś	579.064
SubtotalNonconst. Subtotal2.33123,053SubtotalSubtotal10%\$579,064Design and Construction ContingencySubtotal of Above% of Const. Subtotal10%\$1,673,941Design and Construction ContingencySubtotal of Above% of Project Subtotal25%\$8,912,241Subtotal%% of Project Subtotal25%\$11,140,302Real Estate CostsProperty Acquisition Property Sale0SF\$40.00\$Subtotal%SF\$(40.00)\$-Subtotal%%1Allowance\$\$,960,000.00\$Sea Level RisePresent Worth Cost of Replacement at Alternate Site*1Allowance\$\$,960,000.00\$\$Total (10/2013 Dollars)CCI = 10,238 (Projected)\$18,100,000		legal		% of Const. Subtotal	2%		¢	115 813
SubtotalSol ConstructionSubtotal of Above\$<		Construction Management		% of Const. Subtotal	1.00/		ې خ	F70.064
Subtotal Subtotal of Above % of Project Subtotal \$ 1,673,941 Design and Construction Contingency Subtotal of Above % of Project Subtotal 25% \$ 2,228,060 Subtotal % of Project Subtotal 25% \$ 1,140,302 Real Estate Costs Property Acquisition Property Sale 0 SF \$ 40.00 \$ 1.140,302 Subtotal \$ 1.140,302 \$ 5,960,000 \$ 1.140,302 \$ 1.140,302 Subtotal \$ 1.140,302 \$ 1.1140,302 \$ 1.1140,302		Construction Management		% of Const. Subtotal	10%	0	Ş	579,064
Subtotal\$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Design and Construction ContingencySubtotal of Above% of Project Subtotal% of Project Subtotal\$	Subtotal						\$	1,673,941
Design and Construction Contingency Subtotal % of Project Subtotal \$ 8,912,241 Subtotal % of Project Subtotal 25% \$ 2,228,060 Real Estate Costs Property Acquisition Property Sale 0 SF \$ 40,000 \$ - Subtotal 0 SF \$ 40,000 \$ - - Subtotal 0 SF \$ 5,960,000.00 \$ - \$ - Subtotal Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 Total (10/2013 Dollars) CCI = 9,689 CI = 10,238 (Projected) I								
Contingency % of Project Subtotal 25% \$ 2,228,060 Subtotal % of Project Subtotal 25% \$ 11,140,302 Real Estate Costs Property Acquisition 0 SF \$ 40.00 \$ - Subtotal 0 SF \$ 40.00 \$ - - Subtotal 0 SF \$ 40.00 \$ - - Subtotal Property Acquisition 0 SF \$ 40.00 \$ - Subtotal Property Sale 0 SF \$ \$ - - Subtotal Property Sale 1 Allowance \$ \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.0	Design and Construction	Subtotal of Above					\$	8,912,241
Subtotal Non-reject Subtotal 25% 3 2,222,000 Subtotal Property Acquisition 0 SF \$ 40.00 \$ - Subtotal Property Acquisition 0 SF \$ 40.00 \$ - Subtotal 0 SF \$ (40.00) \$ - - Subtotal 0 SF \$ (10,000) \$ - - Subtotal 0 SF 1 Allowance \$ 5,960,000.00 \$ 5,960,000 Total (10/2013 Dollars) CCI = 9,689 - 5 17,100,000 Total (6/2016 Dollars) CCI = 10,238 (Projected) 5 18,100,000	Contingency			% of Project Subtotal	25%	5	¢	2 228 060
Subtotal Froperty Acquisition 0 SF \$ 40.00 \$ - Property Acquisition 0 SF \$ 40.00 \$ - - Subtotal 0 SF \$ 40.00 \$ - - Subtotal 0 SF \$ 40.00 \$ - - Subtotal 0 SF \$ 5,960,000.00 \$ - - Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 Total (10/2013 Dollars) CCI = 9,689 CCI = 0,238 (Projected) CCI = 10,238 (Projected) Total (5/2016 Dollars) CCI = 10,238 (Projected) Total (5/2016 Dollars)	contingency			70 01 1 10 je et Subtotal	257	,	7	2,220,000
Subtotal \$<								
Real Estate Costs Property Acquisition 0 SF \$ 40.00 \$ - Subtotal 0 SF SF \$ 40.00 \$ - - Subtotal - Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ \$ 17,100,000 Total (10/2013 Dollars) CCI = 9,689 CCI = 10,238 (Projected) CCI = 10,238 (Projected) E E E 18,100,000 E E 18,100,000 E E E 18,100,000 E E E 18,100,000 E E E 18,100,000 E E E E 18,100,000 E E E E E 18,100,000 E<	Subtotal						Ş	11,140,302
Real Estate Costs Property Acquisition 0 SF \$ 40.00 \$ - Subtotal SF SF \$ (40.00) \$ - - Subtotal Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 5,960,000.00 \$ \$ 1,100,000.00 \$ \$ 1,100,000.00 \$ \$ 1,100,000.00 \$ \$ 1,100,000.00 \$ \$ 1,100,000.00 \$ \$ 1,100,000.00 \$								
Property Acquisition Property Sale 0 0 SF SF \$ 40.00 \$ (40.00) \$ - Subtotal SF (40.00) \$ (40.00) \$ - Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 17,100,000 Total (10/2013 Dollars) CCI = 10,238 (Projected) CCI = 10,238 (Projected) E E \$ 18,100,000	Real Estate Costs							
Property Sale 0 SF \$ (40.00) \$ - Subtotal Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 17,100,000 Total (10/2013 Dollars) CCI = 9,689 5 5 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 \$ 18,100,000 18		Property Acquisition	0	SF	\$	40.00	\$	-
Subtotal Fresent Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 5,960,000.00 \$ 1,100,000 Total (10/2013 Dollars) CCI = 9,689 CCI = 10,238 (Projected) S <td></td> <td>Property Sale</td> <td>0</td> <td>SE</td> <td>Ś</td> <td>(40.00)</td> <td>Ś</td> <td>-</td>		Property Sale	0	SE	Ś	(40.00)	Ś	-
Subtotal \$<		- p	5	-	1	,		
Subtrain \$ - \$ - Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000. \$ 5,960,000. \$ 5,960,000. \$ 5,960,000. \$ 5,960,000. \$ 1,100,000. \$	Culturated						~	
Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000. \$ \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,100,000. \$ 1,10	Subtotal						Ş	-
Sea Level Rise Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000. \$ 1,7100,000. \$ 1,7100,000. \$ 1,8100,000. \$ 1,8100,000. \$ 1,8100,000. \$								
Present Worth Cost of Replacement at Alternate Site* 1 Allowance \$ 5,960,000.0 \$ 5,960,000.0 Total (10/2013 Dollars) CCI = 9,689 \$ 17,100,000 Total (6/2016 Dollars) CCI = 10,238 (Projected) \$ 18,100,000	Sea Level Rise							
Total (10/2013 Dollars) CCI = 9,689 \$ 17,100,000 Total (6/2016 Dollars) CCI = 10,238 (Projected) \$ 18,100,000		Present Worth Cost of Replacement at Alternate Site*	1	Allowance	\$ 5,960,	000.00	\$	5,960,000
Total (10/2013 Dollars) CCI = 9,689 \$ 17,100,000 Total (6/2016 Dollars) CCI = 10,238 (Projected) \$ 18,100,000								
Total (6/2016 Dollars) CCI = 10,238 (Projected) \$ 18,100,000	Total (10/2013 Dollars)	CCI = 9.689					Ś	17 100 000
Total (0/2010 Dollars) CCI = 10,236 (Projected) \$ 18,100,000	Total (6/2016 Dollars)	CCI = 10.228 (Projected)					ć	10 100 000
	10141 (0/2016 DOI14rs)	CCI – 10,238 (Projecteu)					Ş	18,100,000

Chapter 6 Findings and Recommendations

6.1 Site Findings

A summary of each site, highlighting the most significant advantages and disadvantages, and information discussed in the previous chapters is provided in Table 6-1.

Table 6-1: Summary of Findings and Costs for Shortlisted Site Alternatives

Item	Site 1A	Site 2A	Site 2B	Site 3A	Site 3B	Site 4
Location	Linda Mar Blvd. Park and Ride Lot – West end of parcel	Skate Park Parking Lot with pipelines crossing and parallel to Hwy 1	Skate Park Parking Lot with pipeline alignments that avoid Hwy 1	Crespi Parking Lot with pipelines crossing and parallel to Hwy 1	Crespi Parking Lot with Alternate Pipeline Alignment	Linda Mar Pump Station Parking Lot
Principal Advantage(s)	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively close to the diversion point and very close to the discharge point, reducing pipeline installation cost and impacts. New pipelines would not need to cross Highway 1. Least impact to existing use of all of the sites during construction due to total area available for parking and bus operation 	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. 	 Inland of Highway 1, so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. New pipelines would not need to cross Highway 1. 	 Inland of Highway 1, so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Potentially improved revenue generation due to avoided lease cost. 	 Inland of Highway 1 so basin is protected from sea level rise and outside of the Coastal Commission review zone. Relatively far from the shoreline so facilities are less exposed to ocean impacts such as salt and sand. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Potentially improved revenue generation due to avoided lease cost. New pipelines would not need to cross Highway 1. 	 Locates basin on same site as Linda Mar Pump Station. Relatively far from privately owned structures and residences reducing the chance of negative perception and claims. Relatively close to diversion point, reducing pipeline installation costs and impacts.
Principal Disadvantage(s)	 Smaller site which may increase cost due to inconvenience to contractor. Close to privately owned structures and residences increasing the chance of negative perception and claims. General plan designation as mixed use and potential loss of revenue due to limited future site use. 	 Smaller site which may increase cost due to inconvenience to contractor. Close to privately owned structures and residences increasing the chance of negative perception and claims. Relatively far from the diversion point, increasing pipeline installation costs and impacts. Loss of free Community Center parking during construction. 	 Smaller site which may increase cost due to inconvenience to contractor. Relatively far from the diversion point, increasing pipeline installation costs and impacts. Loss of free Community Center parking during construction. 	 Relatively far from the diversion point, increasing pipeline installation costs and impacts. Most impact to existing use of all of the sites during construction because of the multiple amenities that are associated with this parking lot and the relatively high usage. 	 Relatively far from the diversion point, increasing pipeline installation costs and impacts. Most impact to existing use of all of the sites during construction because of the multiple amenities that are associated with this parking lot and the relatively high usage. 	 West of Highway 1, exposing basin to the effects of sea level rise and putting the basin within the Coastal Commission review zone. Sea level rise and coastal erosion could lead to early replacement of basin. Flood protection for this site may introduce additional project scrutiny from the Coastal Commission. Closest site to shoreline so facilities are the most exposed to ocean impacts such as salt and sand.
Site Ownership	Caltrans	City	City	Caltrans	Caltrans	City
Owner Willing to Sell?	 Willing to subdivide parcel and sell west end to City. 	• Not applicable as this property is City-owned.	• Not applicable as this property is City-owned.	Yes, conditional on determination of stewardship of gifts and historic markers.	 Yes, conditional on determination of stewardship of gifts and historic markers. 	• Not applicable as this property is City-owned.
Permitting	 Avoids Caltrans and Coastal Commission permitting 	 Permit from Caltrans required for Highway 1 crossing. Coordination and possible permit from the Coastal Commission for diversion pipeline. 	 Avoids Caltrans and Coastal Commission permitting 	 Permit from Caltrans required for Highway 1 crossing. Coordination and possible permit from the Coastal Commission for diversion pipeline and due to visibility of site from Highway 1. 	 Could require Coastal Commission permitting because site is readily visible from Highway 1. 	 Basin would require review and likely permitting from the Coastal Commission for basin, pipelines, and associated facilities.

August 2015

ltem	Site 1A	Site 2A	Site 2B	Site 3A	Site 3B	Site 4
Construction Completion Date ^a	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 12/31/2018 0 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 12/31/2018 0 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2018 6 months prior to regulatory requirement 	 Construction estimated to be complete on 6/30/2019 6 months after regulatory requirement
Other Considerations	 This site is relatively close to existing and past gas stations, increasing the risk for soil contamination. This site has a joint use as a bus station that may need to be relocated during construction based on final siting. Unknown timeframe for acquisition. 	 This site would require construction under and next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. Unknown timeframe for acquisition. 	 This site would require construction next to a natural area. This could lead to additional environmental precautions. Basin requires more than one day to empty due to current sewer capacity restrictions. Unknown timeframe for acquisition. 	 This site may require additional geotechnical work to prepare the ground for construction. Basin requires more than one day to empty due to current sewer capacity restrictions.
Basin Dimensions (internal)	81 ft diam x 70 ft depth	95 ft diam x 55 ft depth	95 ft diam x 55 ft depth	100 ft diam x 52 ft depth	100 ft diam x 51 ft depth	100 ft diam x 51 ft depth
Basin Cost	\$3.4M	\$3.7M	\$3.7M	\$3.8M	\$3.8M	\$3.8M
Associated Improvements Cost	\$2.1M	\$4.0M	\$4.0M	\$4.0M	\$4.2M	\$2.0M
Professional Services and Contractor Costs	\$2.9M	\$4.0M	\$4.0M	\$4.0M	\$4.1M	\$3.1M
Contingency	\$2.1M	\$2.9M	\$2.9M	\$3.0M	\$3.0M	\$2.2M
Land and Replacement Costs	\$1.8M	\$0	\$0	\$2.2M	\$2.2M	\$6.0M ^b
Estimated Total Project Cost, in 2013\$	\$12.3M	\$14.5M	\$14.6M	\$16.9M	\$17.3M	\$17.1M
Estimated Total Project Cost in 2016\$ ^e	\$13.0M	\$15.3M	\$15.4M	\$17.9M	\$18.3M	\$18.1M

Footnotes:

^a See Attachment D for additional detail regarding City staff project schedule input.

^b Cost reflects estimated abandonment and replacement cost due to sea level rise at this location.

^c Estimated total project cost may not reflect sum of above components due to rounding errors.

^d Costs reflect the same unit costs as originally estimated in 2013 for previous draft versions of this report.

^eCosts in 2016 \$ reflect inflation escalation to a presumed mid-point of construction of June 2016
6.2 Evaluation and Comparison of Site Alternatives

The shortlisted site alternatives were evaluated and compared using the following criteria in Table 6-2. Also listed in that table are the scores used to quantify how well (or poorly) a given alternative met a given criterion. The criteria scoring ranged from -2 if the impact was strongly negative, to +2 if it was strongly positive.

Table 6-2: Descri	ption of Criteria	and Scores Used	d in Comparison Matrix

Criteria	Description	Additional Notes
Long-term Impact to Residents and Local Amenities	Potential impacts, or perception of those impacts, to nearby residents, businesses, and facilities. Such concerns could include odor, noise, and visual impacts.	This criterion is particularly sensitive to adjacent residences and businesses. Considered to be a primary factor.
Construction Impact to Residents and Local Amenities	Impacts related to noise, vibration, dust, and loss of parking during construction.	This criterion is sensitive to nearby residences and businesses as well as the "day use" parking public. Considered to be a primary factor.
Willing Landowner	Willingness of landowner to sell the site to the City	Lack of willing owner is considered a fatal flaw.
Vulnerability to Sea Level Rise and Flooding	Vulnerability of the site to flooding or wave erosion due to sea level rise and/or location within 100 yr flood plain. Cost or difficulty of addressing flooding also considered.	Considered to be a primary factor.
Cost	Total project capital cost is included (construction, design, admin, etc)	Considered to be a primary factor.
Schedule	Amount of schedule float between estimated construction completion and regulatory completion requirement.	Considered to be a primary factor. Project schedule estimates provided in consultation with City staff.
Compatibility with Existing and Planned Land Use	How well a site alternative fits with the existing land use and zoning.	All of the alternative sites would allow resumption of parking lot function, but may require zoning modifications
Impact on City Revenue	Considers income disruption from paid parking areas impacted by construction or siting of basin and cessation of lease costs to other land owners	An issue for Site Alternatives 1A, 3A, and 3B
Permitting	Ability of alternative to avoid or minimize the need for Caltrans and/or Coastal Commission consultation and permitting	Considered a primary factor due to potential impact on project schedule.

Criteria	Description	Additional Notes
Exposure to Salt and Sand Impacts	Site Alternatives closest to the ocean are prone to greater maintenance costs due to salt corrosion and sand impacts	
Geotechnical and Soil Contamination Considerations	Impact of site variations on the cost or difficulty of construction	Soil borings were taken at 3 of the four parcels under consideration.
Constructible	Pass/Fail test for the project alternative	

Scores	Description	Additional Notes
2	Direct feedback that is positive; Strong indication that criteria and project are a good fit	
1	Positive indication or anticipated positive response; Likely a good fit between the criteria and project	
0	Neutral or unknown	
-1	Negative indication or anticipated negative response; Likely to be a poor fit between the criteria and project	
-2	Direct feedback that is negative; Strong indication that criteria and project are not a good fit	
Yes	Constructible	Applies to Constructible criteria
No	Not Constructible - Fatal Flaw	Applies to Constructible criteria

The matrix shown below in Table 6-3 quantifies how well each site alternative meets the evaluation criteria used in this analysis.

					Site Alte	ernatives		
Criteria	Weighting Factor	Relative Importance	1A	2A	2B	3A	3B	4
Long-term Impact to Residents and Local Amenities	4	12%	-1	0	0	1	1	1
Construction Impact to Residents and Local Amenities	4	12%	1	-1	-1	0	-1	0
Willing Landowner	4	12%	1	2	2	1	1	2
Vulnerability to Sea Level Rise and Flooding	4	12%	0	0	0	1	2	-2
Cost	4	12%	2	1	1	0	-1	-1
Schedule*	4	12%	1	0	1	0	1	-2
Compatibility with Existing and Planned Landuse	1	3%	-1	1	1	1	1	2
Impact on City Revenue	2	6%	-1	0	0	1	1	0
Permitting	3	9%	1	-2	1	-2	0	-2
Exposure to Salt and Sand Impacts	1	3%	2	2	2	1	1	-1
Geotechnical Considerations	2	6%	2	2	2	2	2	1
Sum of Weighting Factors	33	100%						
Constructible			Yes	Yes	Yes	Yes	Yes	Yes
Score			22	9	22	14	20	-11
Tier			1	2	1	2	1	2

Table 6-3: Site Priority Decision Matrix

* Schedule ratings based on input provided by City staff and included in Attachment D.

6.3 Recommended Site Alternatives

As can be seen in Table 6-3, the following alternatives are top ranked, can be constructed prior to the RWQCB deadline of 31 December 2018, and should be considered the best alternatives from which the City Council can make a final recommendation:

• Site Alternative 1A (Linda Mar Blvd. Park & Ride Lot) – This alternative would have the minimum amount of associated pipeline work and would avoid Caltrans and Coastal Commission permitting requirements. Because the site is owned by Caltrans, it would involve purchasing the western end of the parcel; they are willing to subdivide the parcel and sell only this portion. The schedule and timeline for acquisition is considered to be on the order of 18 months at this time. This site is located next to an existing gas station that does not have double containment for its storage tanks. Based on environmental borings and analysis, Site 1A appears to have very low levels of hydrocarbon contamination in the groundwater that would be expected due to the proximity to the gas station. There are also concentrations of metals found in the groundwater sample that are above environmental screening levels. Water from dewatering would need to be treated to address the fuel contamination and metal concentrations are below the total threshold concentration limit and can therefore be disposed of at a local Class 3 landfill. The equalization basin would be approximately 81 feet in inner diameter, 70 feet deep and would be within 20 feet of neighboring residential property lines.

Estimated capital cost: \$13.0 million.

• Site Alternative 2B (Skate Park Parking Lot) – This site is owned by the City and therefore would not require land purchase. Associated pipelines would be constructed through residential streets, but would avoid paralleling Highway 1. Caltrans and Coastal Commission permitting would not be needed for this alternative. It is assumed that the same groundwater treatment

needed for Site Alternative 1A would be needed for Site Alternative 2B. The equalization basin would be approximately 95 feet in inner diameter, 55 feet deep and would be within 45 feet of neighboring residential property lines. This site alternative has the lowest schedule risk because it avoids the need to purchase the parcel, and avoids the need for Caltrans and Coastal Commission permitting.

Estimated capital cost: \$15.4 million.

• Site Alternative 3B (Crespi Parking Lot) – This site would be furthest from neighboring residential property lines (approximately 350 to 400 feet), and therefore may be raise less concerns with local residents. This site is owned by Caltrans and would require land purchase from Caltrans. Because of its close proximity to Highway 1, Coastal Commission permitting would probably be required. Although the expected permit requirements would be readily met by the envisioned basin, obtaining this permit could add 6 to 12 months to the project schedule. This alternative would route associated pipelines through residential streets, which would therefore avoid Highway 1 and the need for Caltrans permitting. It is assumed that the same groundwater treatment needed for Site Alternative 1A would be needed for Site Alternative 2B. The equalization basin would be approximately 100 feet in inner diameter and 51 feet deep.

Estimated capital cost: \$18.3 million.

The other site alternatives scored lower than the above alternatives due to need for Coastal Commission permitting of the basin or influent pipeline, Caltrans permitting of pipelines parallel to, and crossing, Highway 1, vulnerability to flooding and sea level rise, or an estimated project schedule that does not meet the required regulatory timeframe.

Attachment A - Preliminary Geotechnical Report

City of Pacific Wet Weather Basin Project Pacifica, California

Geotechnical Engineering Siting Study

December 27, 2012

Prepared for:

and

Prepared by:

JACOBSASSOCIATES Engineers/Consultants

> Jacobs Associates 484 North Wiget Lane Walnut Creek, CA 94598

Distribution

To:

From:

Tim Harrison, PE RMC Water and Environment 701 Ocean Street, Room 410 Santa Cruz, CA 95060

Robert Kahl, PE, GE Jacobs Associates

Prepared By:

Robert Kahl, PE, GE and Mark Pinske, ET Jacobs Associates

1

Table of Contents

1	Introduction1					
	1.1	Project	t Description	1		
	1.2	Purpos	se and Scope of Work	1		
2	Method of	lethod of Evaluation				
	2.1	Resea	rch	2		
	2.2	Recon	naissance	2		
	2.3	Prelim	inary Geotechnical Test Borings and Laboratory Testing	2		
3	General	Finding	JS	3		
	3.1	Geolog	gy	3		
	3.2	Seismi	ic Setting and Hazards and Flooding Hazards	4		
		3.2.1	Seismic Setting	4		
		3.2.2	Seismic Shaking	4		
		3.2.3	Liquefaction and Lateral Spreading	5		
		3.2.4	Flooding	5		
	3.3	Genera	al Basin Site History	5		
4	Basin Sit	te-Spec	cific Findings	6		
	4.1	Site A	(Caltrans Parking Lot)	6		
		4.1.1	Site A: Existing Site Improvements	6		
		4.1.2	Site A: Adjacent Structure Foundations	6		
		4.1.3	Site A: Subsurface Soil and Groundwater Conditions	7		
	4.2	Site B	(Skate Park Parking Lot)	7		
		4.2.1	Site B: Existing Site Conditions	7		
		4.2.2	Site B: Adjacent Structure Foundations	7		
		4.2.3	Site B: Subsurface Soil and Groundwater Conditions	8		
	4.3	Site C ²	1 and C2 (Community Center Parking Lot and Vacant Caltrans Parcel)	8		
		4.3.1	Site C1 and C2: General Site Conditions	9		
		4.3.2	Site C1 and C-2: Adjacent Structure Foundations and Ground Settlement	9		
		4.3.3	Site C1 and C2: Subsurface Soil and Groundwater Conditions	9		
	4.4	4.4 Site D (Linda Mar PS Parking Lot)				
		4.4.1	Site D: General Site Conditions	10		
		4.4.2	Site D: Structure Foundations and Ground Settlement	10		
		4.4.3	Site D: Subsurface Soil and Groundwater Conditions	10		
	4.5	Site E	(City Beach Parking Lot)	10		
		4.5.1	Site E: General Site Conditions	11		
		4.5.2	Site E: Structure Foundations and Ground Settlement	11		
		4.5.3	Site E: Subsurface Soil and Groundwater Conditions	11		
5	Siting Ev	valuatio	n	11		
	5.1	Geolog	gic Hazards	11		

		5.1.1	Liquefaction and Densification	11
		5.1.2	Lateral Spreading	12
		5.1.3	Flooding	12
	5.2	Conso	idation Settlement	12
	5.3	Tank E	xcavations	12
	5.4	Prelimi	nary Tank Design Data	13
		5.4.1	Tank Foundation	13
		5.4.2	Downdrag Forces	13
		5.4.3	Hydrostatic Uplift Forces	13
		5.4.4	Corrosion	13
		5.4.5	Construction Impacts	13
6	Prelimina	ary Con	clusions	15
	6.1	Basin S	Sites	15
	6.2	Site-Sp	becific Geotechnical Investigations	16

List of Figures

- Figure 1. Vicinity Map
- Figure 2. Potential Basin Sites
- Figure 3. Geology
- Figure 4. Historic Topographic Maps
- Figure 5. Aerial Photos
- Figure 6. Soil Map
- Figure 7. Bay Area Fault Map
- Figure 8. Seismic Shaking Map
- Figure 9. Modified Mercalli Scale
- Figure 10. USGS Liquefaction Susceptibility Map
- Figure 11. FEMA Flood Map

List of Appendices

Appendix A. Figure A-1. Site A – Caltrans Parking Lot Figure A-2. Site A Photos – Caltrans Parking Lot Appendix B. Figure B-1. Site B – Skate Park Parking Lot Figure B-2. Site B Photos – Skate Park Lot Figure B-3. Log of Boring 1 – Skate Park Lot (3 pages) Figure B-4. Site B – Reference Boring Log RB-1 Figure B-5. Site B – Reference Boring Log RB-2 Appendix C. Figure C-1. Site C1 – Community Center Lot Figure C-2. Site C2 – Vacant Caltrans Parcel Figure C-3. Site C2 Photos – Vacant Caltrans Parcel Appendix D. Figure D-1. Site D – Linda Mar PS Lot Figure D-2. Site D Photos – Linda Mar PS Lot Figure C-3. Log of Boring 2 – Linda Mar PS Lot (3 pages) Figure D-4. Site D – Reference Boring Log RB-2 Figure D-5. Site B – Reference Boring Log RB-2 Appendix E. Figure C-1. Site E – City Beach Parking Lot Figure C-2. Site E Photos – City Beach Parking Lot

1 Introduction

This report presents the results of a geotechnical engineering siting study for the City of Pacifica's (City) planned Wet Weather Basin. The City is currently planning for 2.1-MG underground basin to be located Linda Mar area in the southern portion of the City (see Figure 1).

Project details stated herein, such as potential wet weather basin sites (herein referred to as basin sites) and rough basin dimensions were provided by RMC Water and Environment (2012).

1.1 Project Description

The City and RMC are currently considering the following six basin sites:

- Caltrans Parking Lot (Site A)
- Skate Park Parking Lot (Site B)
- Community Center Site (Site C1)
- Vacant Caltrans Parcel (Site C2)
- Linda Mar Pump Station Parking Lot (Site D)
- City Beach Parking Lot (Site E)

The locations of the basin sites are shown on Figure 2. The basin locations and sizes shown on Figure 2 are representative only and are based on a conceptual drawing by RMC for City review. The diameters of the potential basins will be partially based on the site constraints and could range from 75 feet to 150 feet. Inside basin depths for a 2.1 MG basin could range from approximately 63.5 feet (for a 75-foot-inside-diameter basin) to 16 feet (for a 150-foot-inside-diameter basin).

1.2 Purpose and Scope of Work

The purpose of this geotechnical engineering siting study is to evaluate the six basin sites from a geologic and geotechnical perspective (i.e., excavation retention systems, dewatering, ground improvement requirements, foundation type, constructability, and long-term performance issues)

This report presents a summary of geologic and geotechnical conditions and construction constraints along with geologic and geotechnical impacts on project design, construction and long-term performance for each of the six basin sites. The scope of work for the project was defined in Exhibit A of the Subconsultant Agreement for Services between RMC Water and Environment and Jacob Engineers dated April 12, 2012 and Amendment No. 1 to the Subconsultant Agreement dated October 3, 2012.

2 Method of Evaluation

The geotechnical engineering evaluation of the six potential basin sites included:

• Geologic, seismic, historic development and geotechnical research;

- Site reconnaissance of each site; and
- Preliminary subsurface investigation.

2.1 Research

The site history for the basin sites was researched by:

- Review of historic topographic maps by United State Geologic Survey (USGS).
- Examination of historic aerial photographs on file at Photoscience in Emeryville, California.

The geologic and seismic setting of the basin sites was evaluated by review of published maps and reports by U.S. Geologic Survey (USGS), California Geologic Survey (CGS), and CGS's predecessor agency, California Department of Mines and Geology CDMC) including:

- Geology maps and reports
- Fault and fault rupture maps
- Liquefaction maps

The subsurface conditions at each of the basin sites was researched by review of published soil maps by the USGS, reference geotechnical reports, and geotechnical data from Geotracker site.

Historical aerial photographs were also examined for evidence of manmade alterations at, and adjacent to, the basin sites and for general geologic conditions (i.e., geomorphology).

2.2 Reconnaissance

In conjunction with our review of historic topographic maps, published geologic and geotechnical reports and examination of historic aerial photographs, we conducted a site reconnaissance of each of the potential basin sites to check site-specific surface conditions.

2.3 Preliminary Geotechnical Test Borings and Laboratory Testing

Two geotechnical test borings (i.e., Borings 1 and 2) were drilled and logged to depths of approximately 76.5 feet at basin sites B and D to investigate the subsurface conditions in the area of the basin sites. The borings were drilled on September 18 and 19, 2012. The mapped locations of Borings 1 and 2 are shown on Figure B-1 in Appendix B and Figure D-1 in Appendix D. Logs of Borings 1 and 2 are provided in Figures B-3 and D-3 in Appendices B and D, respectively.

Boring 1 and Boring 2 were drilled with a Failing 1500 drill rig using a 5-inch tri-cone drill bit and rotary wash drilling methods. For the test borings, relatively undisturbed soil samples were obtained by driving a 2.5-inch inside diameter (ID), 3.0-inch outside diameter (OD), Modified California Sampler (MCS) containing brass liners into the bottom of the boring at the depth indicated on the log. Disturbed soil samples were obtained by driving a 1.4-inch ID, 2.0-inch OD Standard Penetration Test (SPT) sampler

into the bottom of the boring. A 140-pound hammer falling 30 inches per blow was used to drive MCS and SPT samplers.

The number of blows required to drive the samplers the last 12 inches of an 18-inch drive are recorded on the boring logs as penetration resistance (blows/foot). The penetration resistance values (blows/foot) recorded for SPT sampler drives on the boring logs are actual American Society for Testing and Materials (ASTM) D1586 N-values. The penetration resistance values recorded on boring logs for all MCS sampler drives are field blow counts for the sampler used and are not SPT N-values. Equivalent SPT N-values for the MCS sampler will be lower. Soil samples retrieved from the test borings were examined for classification, logged, and sealed to preserve their natural moisture content for laboratory testing. Classification systems used to log soil samples are provided in Appendix A. Descriptions of soils provided on the boring logs are based on observations during drilling and sampling and on the results of laboratory tests.

At the end of drilling each test boring, the depth to the groundwater level in the test boring was measured and logged and the test boring was backfilled with cement grout. Groundwater levels noted on the boring logs (at the time of drilling) do not represent static equilibrium groundwater levels. The static equilibrium groundwater levels may be higher or lower than the groundwater level measured in the boring at the end of drilling.

Moisture content, unit weight, Atterberg limits (i.e., liquid limit and plasticity index), grain size analysis, and direct shear tests were performed on soil samples retrieved from the test borings to evaluate their physical characteristics and engineering properties. The results of these tests are included on the Boring Logs 1 and 2 presented on Figure B-3 in Appendix B and Figure D-3 in Appendix D, respectively.

3 General Findings

This section presents the general findings of our research of the potential basin sites.

3.1 Geology

Basin sites A, B, C1 and C2 are located at the mouth of the San Pedro Valley on the southeast side of Pacific Coast Highway. Basin sites A, B and C1 are located in Artificial Fill underlain as Marine Terrace Deposits (Figure 3). Figure 3 shows basin site C1 to be underlain by Marine Terrace Deposits; however, in recent years the site has been filled-in. Figure 3 shows that basin site C2 has not been filled in and is underlain by Marine Terrace Deposits. The Artificial Fill composition and compaction is reported to be highly variable.

Basin sites D and E are located along the Linda Mar Beach on the northwest side of the Pacific Coast Highway. Basin sites D is located in fill-in area underlain by Sand Dune deposits and basin site E is underlain by sand dune deposits (Figure 3). The Sand Dune deposits consist predominately of loose medium- to coarse-grained sand and may also include gravel and cobbles. The depth of Sand Dune deposits are reported to be typically less than 6 meters (i.e., 19 feet).

Prior to infilling and draining of the San Pedro Valley (early1990's), historic topographic mapping (see Figure 4) show the basin sites were located in coastal lagoons and sand dune deposits. These coastal lagoons would fill up with valley runoff until high surf breached the coastal sand dunes and drained the lagoon (or portions of the lagoon). The former coastal lagoon, Lake Mathilde, appears to have been filled in early 1900's. Historic aerial photos (see Figure 5) show that basin sites A, B, C1 and C2 were in what appears to be undeveloped land of the former Lake Mathilde and basin sites D and E were located in sand dune area.

From an overall geotechnical perspective, most of the basin sites are similar (i.e., located at the mouth of the San Perdro Valley near the Pacific Ocean and within and/or adjacent to a filled in Lake Mathilde). Basin site C2 has had little to no infilling and appears to be a remnant of the Lake Mathilde.

U.S. Soil/National Resources (2010), maps the near surface soil as Orthents and Urban Land; however does not provide properties for these soil types (see Figure 6).

3.2 Seismic Setting and Hazards and Flooding Hazards

3.2.1 Seismic Setting

The location of active faults (an active fault is one with known evidence of surface displacement within the last 11,000 years) and other significant seismogenic sources relative to the basin sites are illustrated on Figure 7. No active faults cross the basin sites (Hart and Bryant, 1997). The nearest active faults to the basin sites are the San Gregorio Fault and San Andreas Fault. The San Gregorio Fault is approximately 2.5 to 3.0 km (1.5 to 2 miles) southwest of the basin sites. The San Andreas Fault is approximately 5 to 5.5 kilometers (3 to 3.5 miles) northeast of the basin sites.

The basin sites will be subject to strong ground shaking during future displacement from these faults and other seismogenic sources in Northern California. The Working Group on California Earthquake Probabilities (WGCEP, 2003 and 2007) estimates there is a 6% probability of one or more large (>6.7 magnitude) earthquakes on the San Gregorio Fault, a 21% probability of one or more large (>6.7 magnitude) earthquakes on the San Andreas Fault, and an aggregate 63% probability of one or more large (>6.7 magnitude) earthquakes on any fault in the San Francisco Bay Area in the next 30 years.

3.2.2 Seismic Shaking

The estimated peak ground acceleration during maximum magnitude (characteristic) earthquakes, having a 10% probability of exceedance in 50 years (i.e., a seismic recurrence interval of one event in 475 years), is on the order of 0.66g in the area of the basin sites (Figure 8).

The actual ground surface acceleration that will occur at any of the basin sites during an earthquake will be a function of earthquake magnitude, epicenter distance, mode and direction of seismic wave propagation (directivity), soil amplification or attenuation, and near source factors.

For the estimated peak firm rock accelerations, it is anticipated that the basin sites will experience a Modified Mercalli Intensity shaking severity level on the order of X (see Figure 9).

3.2.3 Liquefaction and Lateral Spreading

Liquefaction is a phenomenon in which soils lose internal strength and become fluid as a result of increased pore water pressure generated by cyclic loading. This behavior has historically been induced by strong ground shaking during earthquakes. Soils which have historically liquefied have typically been saturated silts and sands of low to medium density which are relatively free of clay. An ABAG (2011) map (Figure 10) which shows liquefaction potential as mapped by William Lettis & Associates and Knudsen and others (2000) and Witter and others (2006). The liquefaction map indicates that basin sites A, C2 and D are located in areas of very high liquefaction susceptibility and basin sites B, C1, and E are located in area of moderate liquefaction susceptibility.

During liquefaction, the ground may also undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves large scale lateral displacement of large blocks of ground down gentle slopes towards Pacific Ocean.

3.2.4 Flooding

Mapping of flood areas by FEM Q3 (2003) and DFIRM (2009) as presented on an ABAG (2011) map (see Figure 11) indicates that of the all the sites A, B, and C are located within of the Zone A 100 year flood zone and site D and E are located at or within the area of wave action.

3.3 General Basin Site History

Prior to the 1870, all the basin sites were located within or immediately adjacent to a coastal lagoon (see 1869 topographic map on Figure 4). In 1896, the coastal lagoon had shrunk in size and was called Lake Mathilde (see topographic maps on Figure 4).

A railroad was constructed by the early 1900's along the mouth of the San Pedro Valley adjacent to the present Linda Mar beach front on the ocean side of the basin sites D and E (see early 1900's panoramic photo on Figure 5). The railroad track was in place in 1915 (see topographic map on Figure 4).

Lake Mathilde was filled in between 1900 and 1915 (see topographic maps on Figure 4). Pacific Coast Highway constructed prior to 1939 (see topographic map on Figure 4). Remains of the railroad embankment are visible in 1946 and 1969 air photo photos (see photographs on Figure 5). By 1969, residential and commercial developments covered the San Pedro Valley.

Site Specific histories at basin sites A, B, C1, C2, D and E is presented in Section 4

4 Basin Site-Specific Findings

All of the basin sites are near the mouth of the San Pedro Valley. Each of the six basin sites has unique specific surface and subsurface conditions that will impact design, construction and long-term performance (e.g., site history, past and present use, old and new generations of fill, proximity to existing structures and pipelines, and proximity to Pacific Ocean).

The following sections summarize the specific findings of our research, historic air photo examination, and site reconnaissance for each of the basin sites.

4.1 Site A (Caltrans Parking Lot)

Site A, the Caltrans Parking Lot site, is located on the northeast side of Linda Mar Boulevard near the intersection of Linda Mar Boulevard and the Pacific Coast Highway (see Figure A-1 in Appendix A). A site reconnaissance was made by Jacobs Associates on May 10, 2012.

Site A is bordered by Linda Mar Boulevard to the southwest, Valero Gas Station to the northwest, residential development to the northeast, and parking to the southeast. Selected photographs taken at Site A are presented on Figure A-2.

4.1.1 Site A: Existing Site Improvements

Site A improvements consist primarily of an asphaltic concrete paved parking lot. Surface improvements include lighting, bus stop awnings, and trees. Underground improvements (see Figure 2) include:

- A large-diameter underground storm drain runs along the northwest property line (i.e., adjacent to single-family residential properties, see Figure 2).
- A small-diameter storm drain is located along the northwest side of the Site A (i.e., crosses the parking lot, see Figure 2).
- Underground sewer lines are located within adjacent Linda Mar Boulevard (see Figure 2).

The parking lot and improvements showed no obvious signs of the distress.

4.1.2 Site A: Adjacent Structure Foundations

Single-family residential structures border the northeast side of Site A. The residential structures are primarily one-story wood-framed stucco-sided single family residences. The residential structures appear to be founded on shallow perimeter foundations and isolated interior footing.

A Valero Gas Station is located northwest of Site A. The Valero Gas Station structures are most likely supported on at-grade slab-on-grade foundations. The gas pump awning columns are most likely supported on concrete reinforced pier which extend roughly 5 to 10 feet below grade.

4.1.3 Site A: Subsurface Soil and Groundwater Conditions

The project area was historically located within or adjacent to a coastal lagoon (see Figure 3 and 4) which was filled in in the early 1900's.

Denny's restaurant, located at the southwest corner of Linda Mar Boulevard and Pacific Coast Highway, was at former Lion Oil Gas Station and a Geotraker site (i.e., State Water Board Leak Underground Storage Tank site). Well monitoring by ADR Environmental Group (ADR) indicates the groundwater levels were approximately 1.8 to 7.86 feet deep on February 28, 2005. ADR suspected that groundwater levels are influenced by Pacific Ocean tidal fluctuations.

No site specific subsurface soil information was available at Site A.

4.2 Site B (Skate Park Parking Lot)

Site B is located on the south end of the Skate Park Parking Lot. Access to the Site B is via the Community Center's southeast driveway (see Figure B-1 in Appendix B). A site reconnaissance was made by Jacobs Associates on May 10, 2012.

Site B is bordered by a Skate Park to north, a vacant Caltrans parcel to northwest, single family residences to southwest and undeveloped land to southeast. Selected photographs taken at Site B are presented on Figure B-2.

4.2.1 Site B: Existing Site Conditions

Site B is partially covered with asphaltic concrete paving. Surface improvements at Site B include lighting, and a storm drain inlet. Underground improvements at Site B include a small diameter storm drain line which connects storm drain inlet. The parking lot and improvements showed no obvious signs of distress.

In addition, a set of large underground storm drains parallel to the property line between Site B and the residential development to the southeast (see Figure 2).

4.2.2 Site B: Adjacent Structure Foundations

Adjacent structures include single family residences and the Skate Park structure. The single family residences are most likely founded on shallow perimeter foundations and isolated interior footings. The Skate Park is a massive concrete structure with swimming pool-like features which extends below adjacent grade. The Skate Park was constructed in 2005. We observed no obvious cracks in the concrete or structure settlement. It is not known to us at this time if the Skate Park structure is supported on a shallow (i.e., mat foundations) or deep foundations system (i.e., piles or drilled piers).

4.2.3 Site B: Subsurface Soil and Groundwater Conditions

Project Boring 1 was drilled near the southwest corner of the Skate Park parking lot. A log of Boring 1 is presented on Figure B-3 in Appendix B). In addition, two borings were drilled by John C. Hom & Associates, on November 11, 2002, at the Skate Park site. These reference borings (herein referred to as Reference Boring RB-1 and RB-2) are presented on Figures B-4 and B-5 in Appendix B.

The pavement encountered in Boring 1 consisted of approximately 2 inches of asphaltic concrete. Below the asphaltic concrete, fill consisting of clayey sand with gravel extend to a depth of about 5 feet.

Below the fill, high plasticity clays were encountered to a depth of 20 feet. The clays were soft from depths of about 5 to 8 feet and very soft from depths of about 8 to 20 feet. Peaty soil layers were encountered within the soft/very soft clay.

From 20 feet to 76.5 feet, Boring 1 encountered interlayered deposits of:

- stiff to hard lean clay with varying amounts of sand and gravel,
- medium dense to very dense sand with varying amounts of gravel, silt and clay, and
- dense to very dense gravels with varying amount of sand, silt and clay.

Groundwater levels could not be measured within Boring 1 due to rotary wash drilling methods. Wet soils samples were encountered at a depth of 7 feet. Groundwater levels at the site are expected to vary seasonally and may also be influenced Pacific Ocean by tidal fluctuations.

Reference Boring RB-1 encountered very loose to very stiff fill in the upper five to six feet. Below the fill, layers of soft clay and very loose sand were encountered to depths of 12. Below 12 feet and 16 feet, loose sand interlayered with peat (marsh deposits) was encountered. Below 16 feet and 20 feet, medium stiff peat and stiff sandy clays were encountered.

Reference Boring RB-2 encountered loose fill in the upper $4\frac{1}{2}$ feet. Below the fill, medium stiff sandy clay interlayered with medium stiff clayey and peaty clay were encountered to a depth of 21 feet.

4.3 Site C1 and C2 (Community Center Parking Lot and Vacant Caltrans Parcel)

Site C1 is located at the Community Center Parking Lot. Site C1 is bounded by the Community Center, the Skate Park, Site C2, and the Pacific Coast Highway (see Figure C-1 in Appendix C).

Site C2 is an undeveloped area bordered by Pacific Coast Highway to the northwest, a single family residential development to the southwest, the Community Center parking lot the northeast, and the Skate Park to the east (see Figure C-2 in Appendix C).

A site reconnaissance of Sites C1 and C2 was made by Jacobs Associates on May 10, 2012. Selected photographs taken at Site C2 are presented on Figure C-2. No photographs were taken of Site C1.

4.3.1 Site C1 and C2: General Site Conditions

The parking lot pavement at Site C1 is asphaltic concrete. The parking lot has curbs and planters, lighting, and a raised monument. The parking lot and improvements show no obvious signs of the distress.

Site C2 is undeveloped land and possibly a remnant of the former Lake Mathilde (see geology and topographic map on Figures 3 and 4). The site appears to be a potential wildlife habitat. Existing underground improvements include a set of large storm drains which parallel to the property line between Site C2 and the single family residential development to the southeast (see Figure 2).

4.3.2 Site C1 and C-2: Adjacent Structure Foundations and Ground Settlement

Structures adjacent to Site C1 include the Skate Park structure and Community Center building. The Skate Park is a massive concrete structure with swimming pool-like structures which extend below adjacent grade. The Skate Park was constructed in 2005. We observed no obvious cracks or structure settlement at the Community Center building or the Skate Park structure. It is not known to us at this time if the Skate Park structure is supported on a shallow (i.e., mat foundations) or deep foundations system (i.e., piles or drilled piers). The Community Center building is a large above grade structure and is most likely supported on a deep foundation system (e.g., drilled piers, piles).

4.3.3 Site C1 and C2: Subsurface Soil and Groundwater Conditions

The subsurface soil conditions at Site C1 and Site C2 are anticipated to be similar to Boring 1 at the Skate Park parking lot and Reference Borings RB-1 and RB-2 drilled at the Skate Park (see Boring 1 and References Borings RB-1 and RB-2 on Figure B-2, B-3, and B-4 in Appendix B, respectively).

Raising Site C2 with fill could result in consolidation settlement of the soft/peaty clays which underlie the upper about 10 to feet of the site. The fill-induced settlement could potentially extend beyond Site C2 and result in foundation settlement and damage to adjacent structures (e.g., nearby single-family residential structures.

4.4 Site D (Linda Mar PS Parking Lot)

Site D is located at the Linda Mar Pump Station Parking Lot. Site D is bounded by the Linda Mar Pump Station to the southwest, the Pacific Coast Highway to the southeast, the Taco Bell parking lot to the northeast, and Linda Mar beach to the northwest (see Figure D-1 in Appendix D).

A site reconnaissance of Site D was made by Jacobs Associates on May 10, 2012. Selected photographs taken at Site D presented on Figure D-2.

4.4.1 Site D: General Site Conditions

The parking lot pavement at Site D consists of asphaltic concrete. Existing underground improvements include a storm drains along the southeast and southwest sides the basin and a force main sewer and gravity sewer along the northwest side (see Figure 2).

4.4.2 Site D: Structure Foundations and Ground Settlement

The Linda Mar Pump Station extends below grade. The foundation depth and type of the pump station is not known to us at this time. The Taco Bell structure to the north of the Basin D is supported on wood piles.

The asphaltic concrete pavement adjacent to the pump station has settled differential approximately 2 inches (see Figure D-2 in Appendix D). Differential settlement could be the result of densification of basement retaining wall backfill, fill-induced consolidation settlement of underlying clays, and/or peat decomposition.

4.4.3 Site D: Subsurface Soil and Groundwater Conditions

Project Boring 2 was drilled near the southeast corner of the pump station parking lot (see Figure D-1). The log of Boring 2 is presented on Figure D-3 in Appendix D.

The pavement encountered in Boring 2 consisted of approximately 3 inches of asphaltic concrete. Below the asphaltic concrete, fill consisting of clayey sand and gravel and silty gravel with sand and cobbles extended to a depth of 7 feet. The fill was dry to moist and medium dense to dense.

Below the fill, a thin layer of sandy clay was encountered between 7 and about 9 feet. Below 9 feet, medium dense to dense poorly-graded sand (i.e., old sand dune deposits) was encountered to a depth of 17 feet. Between 17 and 23 feet, a medium stiff layer of peat with organic silt and clay was encountered.

Between 23 feet and about 76.5 feet, layers of medium stiff to stiff clays, medium dense to dense clayey/silty sand with gravel were encountered.

Groundwater levels could not be measured within Boring 2 due to rotary wash drilling methods. Wet soils samples were encountered at a depth of about 8 feet. Groundwater levels are expected to vary seasonally and may also be influenced Pacific Ocean by tidal fluctuations. Doug Trade with the City of Pacifica reported that groundwater flowed through the pump station basement slab during a repair which indicates that the groundwater level at Site D is above the base of the pump station basement.

4.5 Site E (City Beach Parking Lot)

Site E is located at the northeast end of the city beach parking lot (see Figure E-1 in Appendix D). Site E is bounded by a public restroom/storm drain pump station structure and Linda Mar beach to the northwest, sand dunes to the northeast, and landscaping and Pacific Coast Highway to the southeast.

A site reconnaissance of Site E was made by Jacobs Associates on May 10, 2012. Selected photographs taken at Site E presented on Figure E-2.

4.5.1 Site E: General Site Conditions

The parking lot at Site E consist of an asphaltic concrete. Existing underground improvements include a storm drains along the northwest and southwest sides of the Site E and a force main and sewer line along the northwest side of Site E (see Figure 2).

4.5.2 Site E: Structure Foundations and Ground Settlement

The restroom/storm drain pump station structure extends below grade. The foundation depth and type is not known to us at this time.

4.5.3 Site E: Subsurface Soil and Groundwater Conditions

Sand dune deposits (see Figure 3) most likely underlie the exiting pavement section. The subsurface conditions at Site E are anticipated to be similar to that encountered in Boring 2 at the Linda Mar Pump Station (see Figure D-3 in Appendix D), with the exception of possibly less fill.

5 Siting Evaluation

Based on findings from our geologic and site research, historic air photo examination, and site reconnaissance, we evaluated the six potential basin sites with respect to geologic hazards and geological/geotechnical impacts on design, construction and long-term performance.

5.1 Geologic Hazards

Although no active faults are mapped as crossing any of the basin sites, all of the basin sites are subject to strong levels of seismic shaking from nearby faults.

For determining CBC 2010 seismic design parameters, Site B is Site Class E and Site D is Site Class D, based on Boring 1 and Boring 2 soil profile. Based on a similar geologic setting as Site B; Sites A, C1, and C2 are most likely Site Class E. Based on similar geologic setting as Site D; Site E is most likely Site Class D.

A site-specific subsurface investigation to determine the thickness, plasticity index, moisture content, and undrained shear strength is required to determine the Site Class for Basin Sites A, C1, C2, and E.

5.1.1 Liquefaction and Densification

Sites A, C2 and D are located in mapped areas of very high liquefaction susceptibility and Sites B, C1, and E are locate in mapped areas of moderate susceptibility (see Figure 10).

Project borings 1 and 2 did not encounter potentially liquefiable sands at Site B and D, respectively. However, Reference Borings RB-1 and RB-2 at the Skate Park encountered potential liquefiable wet, very loose to loose layers of sands to depths of 14 feet.

Liquefaction at the sites could result in ground surface settlement; however, the basin bottoms will extend below the liquefiable soils and the basin structure will therefore not be adversely impacted by liquefaction and densification. Localized liquefaction and densification of very loose to medium dense sands could impact influent and effluent pipelines connected to the basin and at-grade improvements.

Additional subsurface investigations are required to confirm potential for liquefaction at the chosen site.

5.1.2 Lateral Spreading

The risk of liquefaction at the basin sites is very high to moderate (Section 5.1.1 above), however, the potential for lateral spreading impacting the basins is low. Liquefaction induced lateral spreading into Pacific Ocean could impact influent and effluent pipelines connected to the basin and at-grade improvements.

5.1.3 Flooding

The FEMA Flood map (see Figure 11) indicates that all the sites are within a 100-year flood zone and the near Basin Sites B and E, flooding with velocity hazard (i.e., wave action) could occur. Design of basin and basin improvement will need to address potential flooding.

5.2 Consolidation Settlement

It is anticipated that the basin bottoms will be underlain by stiff to very stiff and medium dense to dense soils and will not be susceptible to consolidation settlement.

Site C2 is lower in elevation than the other basin sites and appears be located within a remnant of a former lake (Lake Mathilde). Raising the elevation of the Site C2 by placement of fill could result in consolidation settlement and/or densification of underlying soft/loose soils. The consolidation settlement and densification could impact adjacent residences and nearby improvements (i.e., buried pipelines).

5.3 Tank Excavations

Project borings 1 and 2 were drilled to depths of 76.5 feet. No bedrock was encountered within the project borings. With the exception of potential for large debris within the fill (which may require removal prior to installing shoring), the soils encountered in the project borings are excavatible with conventional equipment.

Water-tight shoring for basin excavations will be necessary at all of the sites. Fills and native sand and gravels will likely produce copious groundwater inflow. Dewatering will be difficult and will produce area-wide subsidence from consolidation soft soils layers. Therefore, water-tight shoring will be

preferable. Excavations in fill and native soil will be done in the wet (i.e., "underwater" excavation) and will include a tremie-poured concrete floor plug. Water-tight shoring, such as sheetpiles, slurry diaphragm walls, secant pile walls or sunken caissons can be installed ahead of the excavation in a manner in which groundwater inflow can be controlled.

The scope of work for this basin siting study did not include an assessment of soil and groundwater contamination at the sites. However, our site reconnaissance and site research did suggest that excavations at Basin Site A could encounter contaminated soil and groundwater associated with nearby gas stations (see Figure A-1 in Appendix A).

5.4 Preliminary Tank Design Data

5.4.1 Tank Foundation

Mat foundations can be used to support at all potential basin sites.

5.4.2 Downdrag Forces

Basin sites raised with fill (e.g., Basin Site C2) will induce consolidation settlement of soft clay. Consolidation, if not completed prior to construction of the basin, will result in downdrag forces (i.e., negative friction) along sides of the buried basin. The rate of consolidations is dependent on the thickness of the compressible soils. Given the thickness of the underlying soft soils encountered in Project Boring 1 and 2, it is anticipated that consolidation settlement will occur within one to two months after fill placement. If construction of the basin does not occur prior to completion of consolidation settlement a preliminary downdrag load of 500 pounds per foot for existing fill and soft clay is recommended.

5.4.3 Hydrostatic Uplift Forces

The basins will need to resist hydrostatic uplift forces (i.e., buoyancy from groundwater). Concrete plugs, hold-down anchors drilled and grouted into the underlying soil, concrete collars and/or deep foundation lips can potential be used to resist hydrostatic uplift pressures

5.4.4 Corrosion

The basins are underlain by fill and alluvial soils containing clay soil are typically moderately to highly corrosive to uncoated steel (e.g., pipe piles) and reinforced concrete. Corrosion testing of soils should done to evaluate corrosion potential at the chosen basin site

5.4.5 Construction Impacts

Many of the basin sites are located near or adjacent to existing structures and improvements (i.e., residential housing, commercial and industrial structures, roads, underground utilities) which will have a significant impact on construction and construction costs (i.e., will require special shoring, ground improvement, temporary support, or a combination thereof). We have identified the sites which

potentially will have significant, moderate, or minimal impact on adjacent structures and therefore require protection of adjacent structures in Table 1.

We also looked at the space available at each of the sites (for the basin structure and the construction equipment and laydown area) with respect to site constraints (e.g., property lines, existing improvements). A summary of our conclusions regarding available construction space is provided on Table 1.

Other miscellaneous construction considerations we identified are summarized on Table 1.

		CONSTRUCTION IMPACTS		
Basin Site	Potential Impact to			
	Adjacent	Available Construction Space	Miscellaneous	
	Structures			
A	Moderate	Construction space is tight and will require a small diameter deep basin.	Close proximity to single family residences and potential for claims from adjacent homeowners.	
			Shoring design needs to protect adjacent residences and underground utilities.	
В	Moderate	Construction space is tight and will require a small diameter deep basin.	Close proximity to single family residences and potential for claims from adjacent homeowners.	
			Shoring design need to minimize excavation shoring deflection to prevent damage to Skate Park structure (especially if Skate Park structure is not supported on piles) and adjacent	
			underground utilities.	
<u></u>			Safety issue with skate park patrons.	
CI	Minimal	Construction space is adequate.	center patrons.	
C2	Moderate to Significant	Construction space is adequate.	Potential for claims from adjacent homeowners due to consolidation settlement caused by fill	
		Removal of vegetation and raising grade required	placement at site to raise the grade.	
			Shoring design needs to minimize excavation	
			shoring deflection to prevent damage to adjacent	
			structures and underground utilities.	
			Possible wildlife habitat site.	

Т	able	1.	Construction	Impacts
-				

Basin		CONSTRUCTION	IMPACTS (cont'd)
Site	Adjacent Structure		Manula
D	Impact	Available Construction Space	
D	Moderate	with the exception of the northwest side adjacent to the Taco Bell parking lot.	Shoring design needs to minimize excavation shoring deflection to prevent damage to adjacent structures and underground utilities (including pump station and Taco Bell parking lot).
E	Moderate	Construction space is tight and will require a small diameter deep basin.	Shoring design needs to minimize excavation shoring deflection to prevent damage to adjacent structures and underground utilities Safety could be an issue at busy beach parking lot.

Table 1. Construction Impacts (cont'd)

6 Preliminary Conclusions

Based upon the findings of this Geotechnical Engineering Siting Study and considering the principal geotechnical impacts on design, construction and long-term performance (e.g., soil stability/shoring systems, groundwater, impacts on, and protection of, adjacent structures, ground improvement requirements, foundations, differential settlement, buried structures, potential site contamination, and available construction space), it is our opinion that underground basin can be constructed on any of the potential sites (i.e., no fatal flaws); however basin construction at some sites is more preferable and less risky than at other sites.

6.1 Basin Sites

Site C1 (i.e., Community Center Parking Lot) is the most preferable and least risky basin site primarily for the following reasons:

- Site C1 can be sited to minimize the impact on adjacent structures.
- Site C1 has a minimal amount of adjacent subsurface utilities.
- Site C1 can accommodate a larger basin diameter than Sites A, B, and E. This result in a shallower and less expensive basin.

Site A (i.e., Caltrans Parking Lot), Site B (i.e., Skate Park Parking Lot), Site D (i.e., Linda Mar Pump Station), and Site E (i.e., City Beach Parking Lots), are next preferable basin sites primarily for the following reasons:

• Sites A, B, and E can accommodate a basin with a smaller diameter. A smaller diameter basin will require deeper and more expensive shoring system.

- Site D can accommodate a larger basin than Sites A, B, and E, however, Site D is bordered by critical underground piping on three sides which will require a shoring system which allows minimal deflection.
- Site A, B, and E will require extensive monitoring of adjacent improvements.
- Site D is close to existing and former gas stations and could have soil and groundwater contamination issues.

Site C2 (i.e., Vacant Caltrans Parcel) is the least preferable basin site primarily for the following reasons:

• Site C2 will require fill to raise grade which could result in consolidation settlement of adjacent single family residences and underground storm drains.

6.2 Site-Specific Geotechnical Investigations

Site-specific geotechnical and environmental design investigation will be required at the selected basin site. The investigations will likely include: deep borings (similar to those drilled at Site B and Site D), cone penetration tests, multi-stage piezometers, groundwater monitoring/sampling wells, test pits in fill and physical and chemical testing of disturbed and "undisturbed" soil and groundwater samples.

Figures

Figure 1, Alternative Site Study (RMC, 2012)

NOTES:

Basin locations and sizes intended to be presentative only. Furture refinement of size, location, and shape will occur later in the site feasibility evaluation. The location and type of pipelines have not been verfied and intended in this analysis to be a representative only.

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

Potential Basin Sites

Figure

2

Surficial Geology Map and Descriptions from Brabb, Graymer, and Jones (1998), Geology of the Onshore Part of San Mateo County, California; U.S.G.S OFR 98-137.

Approximate Locations of Potential Basin Sites:

- **(**A) Caltrans Parking Lot
- **(**B) Skate Park Parking Lot
- **(**C1) - Community Center Parking Lot

(E)

- Vacant Caltrans Parcel
- **(**D) - Linda Mar Pump Station Parking Lot
 - City Beach Parking Lot

Artificial Fill (Historic)

- Loose to very well consolidated gravel, sand, silt, clay, rock fragments, organic matter, and man-made debris in various combinations. Thickness is variable and may exceed 30 m in some places. Some is compacted and quite firm, but fill made before 1965 is usually not compacted and consists simply of dumped materials.

Younger (Inner) Alluvial Fan Deposits (Holocene)

- Unconsolidated fine- to coarse-grained sand, silt, and gravel, coarser grained at heads of fans and in narrow canyons.

Younger (Outer) Alluvial Fan Deposits (Holocene)

- Unconsolidated fine sand, silt, and clayey silt.

Colluvium (Holocene)

- Loose to firm, friable, unsorted sand, silt, clay, gravel, rock debris, and organic material in varying proportions.

Marine Terrace Deposits (Pleistocene)

- Poorly consolidated and poorly indurated well- to poorly-sorted sand and gravel. Thickness variable but probably less than 30 m.

Sand Dune and Beach Deposits (Holocene)

- Predominantly loose, medium- to coarse-grained, well-sorted sand but also included pebbles, cobbles, and silt. Thickness less than 6 m in most places, but in other places may exceed 30 m.

- Greenish-gray to buff, fine- to coarse-grained sandstone (graywacke), with interbedded siltstone and shale. Siltstone and shale interbeds constitute less than 20 percent of unit, but in places form sequences as much as several tens of meters thick. In many places, shearing has obscured bedding relations; rock in which shale has been sheared to gouge constitutes about 10 percent of unit. Gouge is concentrated in zones that are commonly less than 30 m wide but in places may be as much as 150 m wide. Total thickness of unit is unknown but is probably at least many hundreds of meters.

Unnamed Sandstone, Shale, and Conglomerate (Paleocene)

- Rhythmically alternating beds of sandstone and shale, with a discontinuous boulder and cobble conglomerate near middle of section and some pebble conglomerate beds near base of section on Montara Mountain. Sandstone is gary to buff, fine- to coarsegrained, and arkosic; the shale is dark gray to brown; conglomerate contains angular boulders of granite rock as long as 2 m and smaller boulders, cobbles, and rounded pebbles of hornblede gneiss, muscovite gneiss and schist, Franciscan chert, guartzite, limestone, sandstone, and shale.

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica. California

Geologic Map

Figure

			Т
	JACOBS ASS	OCIATES	
1	Engineers/Con	sultants	
	File No. 4497.0	December 2012	

ISGS 15 Minute Quadrangle, San Mateo (1915)

Approximate Locations of Potential Basin Sites:

- Caltrans Parking Lot
- Skate Park Parking Lot
- Community Center Parking Lot
- Vacant Caltrans Parcel
- Linda Mar Pump Station Parking Lot
- City Beach Parking Lot

RMC Water and Environment

ity of Pacifica Vet Weather Basin Project Pacifica, California **Historic Topographic Maps** Figure

- A Caltrans Parking Lot
- **B** Skate Park Parking Lot
- C1 Community Center Parking Lot
- **C2 Vacant Caltrans Parcel**
- D Linda Mar PS Parking Lot
- E City Beach Parking Lot

- Approximate Locations of Potential Basin Sites

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

Aerial Photos

Figure

Soil Map and Descriptions from U.S. Soil/Natural Resources Conservation Service (Kashiwagi, J.H., 1991 & NRCS 2010).

Map	oped Soil	Below	USCS	% Passin	ng Sieve:	Atterbe	erg Limits	Depth to	High Wator	Risk of Corrosion			
ld.	Name	Depth (in)	Symbol	No. 4	No. 200	Liquid Limit	Plasticity Index	(in)	Table (ft)	Uncoated Steel	Concrete		
109	Candlestick 0-20		SM, ML, CL, SC	80-100	35-60	20-40	NP-20	20	>6.0	Moderate	Moderate		
	Barnabe	0-8	GC-GM, GM	45-55	15-30	20-35	NP-10	8	>6.0	Moderate	Moderate		
121/124	Orthents	0-60		No	proportion	listed for O	wth onto and	lirban land	(Kachiwagi	1001)			
131/132	Urban Land	0-6		No properties listed for Orthents and Urban Land (Kashiwagi, 1991)									
138	Beaches												

B - Skate Park Parking Lot D - Linda Mar PS Parking Lot

A - Caltrans Parking Lot C1 - Community Center Parking Lot **C2 - Vacant Caltrans Parcel** E - City Beach Parking Lot

- Approximate Location of Potential Basin Sites

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

Soil Map

Figure

Map from WGCEP (2003 and 2007)

JACOBS ASSOCIATES

Engineers/Consultants

RMC Water and Environment City of Pacifica

Figure

File No. 4497.0

December 2012

Bay Area Fault Map

Wet Weather Basin Project

Pacifica, California

AVERAGE PEAK VELOCITY (CENTIMETERS PER SECOND)	MODIFIED INTENSITY AND DESCI	MERCALLI VALUE RIPTION	AVERAGE PEAK ACCELERATION gravity - 9.80 m per second squ	("g" is eters ared)
	 Not felt except by a very fe circumstances. 	ew under especially favorable		
	II. Felt only by a few persons of buildings. Delicately sus	at rest, especially on upper floors spended objects may swing.		
I	 Felt quite noticeable indoc buildings, but many people Standing vehicles may rock truck. Duration estimated. 	ors, especially on upper floors of e do not recognize it as an earthquake. < slightly. Vibration like passing of a		
1-2 N	V. During the day felt indoors some awakened. Rattling of make creaking sounds. Ha a heavy truck passing. Sta	by many, outdoors by few. At night of dishes, windows, and doors; walls anging objects swing. Sensation like nding vehicles rocked noticeably.	0.015g	02g
2-5	V. Felt by nearly everyone, ma and so on broken; cracked overturned. Disturbances sometimes noticeable. Per trembled throughout.	any awakened. Some dishes, windows plaster in a few places; unstable objects of trees, poles and other tall objects ndulum clocks may stop. Buildings	0.03g-0).04g
5-8 V	 Felt by all, many frightened heavy furniture moved; a fe chimneys. Trees, bushes, s slight in poorly constructed some windows. Moved furn 	I and run outdoors. Some moderately w instances of fallen plaster and damaged shaken slightly to moderately. Damage buildings. Broken dishes, glassware and nishings and overturned furniture.	0.06g-0).07g
8-12 VI	 Everybody runs outdoors. I design and construction; sl structures; considerable in chimneys cracked to consid vehicles. Waves on ponds, windows, heavy furniture or 	Damage negligible in buildings of good ight to moderate in well-built ordinary poorly built or badly designed structures; derable extent. Noticed by persons driving lakes, running water. Broke numerous verturned. Dislodged bricks and stones.	0.10g-C).15g
20-30 VII	 Damage slight in specially of ordinary substantial buildin built structures. Panel wall chimneys, factory stacks, or furniture overturned. Sand Changes in well water. Percenting of the panel state of the state of the state of the changes of the state of the state of the state of the changes of the state of the state of the state of the changes of the state of the state of the state of the changes of the state of the state of the state of the changes of the state of the state of the state of the state of the change of the state of the state of the state of the state of the change of the state of the state of the state of the state of the change of the state of the state of the state of the state of the change of the state of the state of the state of the state of the change of the state of the state of the state of the state of the state of the state of the change of the state	designed structures; considerable in ngs with partial collapse; great in poorly s thrown out of frame structures. Fall of olumns, monuments, walls. Heavy I and mud ejected in small amounts. sons driving vehicles disturbed.	0.25gC).30g
45-55 jj	X. Damage considerable in sp frame structures thrown ou with partial collapse. Build conspicuously. Undergrout	becially designed structures; well-designed ut-of-plumb; great in substantial buildings, lings shifted off foundations. Ground cracked nd pipes broken. Reservoirs threatened.	0.50g-C).55g
More than 60	X. Some well-built wooden str frame structures destroyed Railroad rails bent. Landsl steep slopes. Shifted sand over banks. Reservoirs gre pavements and asphalt road	ructures destroyed; most masonry and d with foundations; ground badly cracked. ides considerable from river banks and d and mud. Water splashed, slopped eatly damaged. Open cracks in cement ad surfaces.	More th	an 0.60g
×	 Few, if any, (masonry) struct destroyed. Broad fissures completely out of service. ground. Rails bent greatly. damaged. Destroyed large 	ctures remain standing. Bridges in ground. Underground pipelines Earth slumps and land slips in soft Dams, dikes, embankments severly well-built bridges.		
XI	 Damage total. Practically a greatly or destroyed. Lands banks extensive. Fault slip vertical off-set displacemen underground disturbed and ground surfaces. 	III works of construction damaged slides, falls of rock, slumping of river s in firm rock, with notable horizontal nts. Water channels, surface and I modified greatly. Waves seen on		
REFERENCE ; Compiled from "Eart Primer," Bruce A. B	hquakes & Volcanoes," Volume 2 olt, W.H. Freeman and Company,	1, Number 1, 1989, and "Earthquakes A San Francisco, Copyright 1993.		
JACOBS ASS	OCIATES	RMC Water and Environme	ent	Figure
Engineers/Co	nsultants	Wet Weather Basin Project Pacifica, California		9
File No. 4497.0	December 2012	Modified Mercalli Scale		

- Approximate Locations of Potential Basin Sites

- **A Caltrans Parking Lot**
- **B Skate Park Parking Lot**
- C1 Community Center Parking Lot

C2 - Vacant Caltrans Parcel

- D Linda Mar PS Parking Lot
- E City Beach Parking Lot

IACOBS ASS	OCIATES
Engineers/Con	nsultants
 File No. 4497.0	December 2012

Liquefaction Map from ABAG, 2012.

RMC Water and Environment

City of Pacifica Wet Weather Equalization Basin Project Pacifica, California

USGS Liquefaction Susceptibility Map

Figure

- **B** Skate Park Parking Lot
- **C1 Community Center Parking Lot**
- **C2 Vacant Caltrans Parcel**
- **D** Linda Mar PS Parking Lot
- **E City Beach Parking Lot**

RMC Water and Environment

City of Pacifica Wet Weather Equalization Basin Project Pacifica, California

FEMA Flood Map

Engineers/Consultants

File No. 4497.0

December 2012

Figure

Appendix A

NOTES:

Basin location and size are preliminary and taken from Figure 1, Alternative Site Study (RMC, 2012).

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

Site A - Caltrans Parking Lot

Figure

Appendix B

RMC Water and Environment

December 2012

File No. 4497.0

Site B - Skate Parking Lot

Figure

1 1 Westerly view of Site B. Parking lot in the area of the Site B does not appear to get heavy use. Single family residential borders the southwest side of the Skate Park lot. 2

ACIFICA

Northwestery view of Site B. Site B will be (2) located partially in the parking lot and in the undeveloped land adjacent to the Skate Park.

3 Westerly view of Skate Park. The Skate Park is a concrete structure which appears to be founded on a shallow foundation. No the concrete has no cracks. The Skate Park was dedicated in December of 2004.

Photographs taken on May 10, 2012.

s	RMC Water and Environment City of Pacifica	Figure
	Wet Weather Basin Project Pacifica, California	B-2
er 2012	Site B Photos - Skate Park Lot	

JACOBS ASSOCIATE

Engineers/Consultants

File No. 4497.0

(3)

Decemb

					LOG OF BORING 1 $^{ imes}$					×		GRAIN SIZE	I		DIR SH	RECT EAR
	ġ		ION ICE	NATER	LOCATION: see Figure B-1		ш	УTIS	MIT	Y INDE		sieve)	(e	LED SSIVE		ngle
РТН	VIPLE N	Щ	NETRA SISTAN	OUNDV			ISTUR	Y DENS	UID LIN	ASTICIT	avel 4 sieve)	nd to#200	es 200 sieve	CONFIN MPRES RENGTI	resion	ernal ction Ar
E feet	SAI	Τ	Ыows/ft.	ଭGR	DESCRIPTION	0	0W %	bs./ft.3	ГIÓ	Ы	°, Gra	°Sai (#4	% Ein ∭	ZOF ∧S/ft.2	Ö p.s.f.	Fric
					Parking lot: 2 inches asphalt concr	ete /										
					- yellowish brown											
-					 fine to coarse sand, fine gravel dry 	г										
-	1	\times			SANDY CLAY (CL)	/	27		43	23						
5-					- dark gray - fine sand	Г										
-	2		4]	26	95						0.74		
-					- dark grayish blue											
-					- fine sand	Ī	<u> </u>				-					
-					\ - moist]										
10-							70		~	07						
-	3		0				12		99	107						
-					FAT CLAY (CH) - BAY MUD											
-					- trace to few organics, peaty											
- -					- very soft											
15-			þa		- wet	ONSOLIDATION TEST SAMPLE B-2-4										
	4		hshq			$C_{\rm C} = 0.43$ $P_{\rm c} = 1.40 \rm kcf$	71	59								
						1 [°] – T' 1 0 V2I										
20-														<u> </u>		
-	5		13		- light grayish blue with light brown mo	ottling	23	104						2.34		
-					- few fine sand, little silt - stiff											
-					- moist		<u> </u>				-					
-					SILTY SAND WITH GRAVEL (SM) and SILTY GRAVEL WITH SAND (GM)											
25-					 light reddish/yellowish brown fine to coarse sand 											
-	6		42		 little angular gravel/rock (up to 1.5") dense 		10									
-					- dry											
					BORING CONTINUED AT 28 FEET	DN FIGURE B-4 (2 OF 3)										
NOTES	1003	Drille See Free	ed 09/ report groun	17/1/1/1 text a dwat	2 with a Failing 1500 drill rig using a 5-inch and figures B-3 and B-5 through B-9 for defi er level obscured during drilling due to wate	tri-cone bit and mud rotary with a nitions, lab test results, and addit r-added drilling method. Static ec	a 30" d ional s quilibr	drop by soil des ium gro	v 140 scripti oundv	lb. au ons. vater	itoma depth	tic sar is unl	npling knowr	g hamm n.	er.	
						RMC Water and	Env	viror	nme	ent				Fi	gure	;
	L	J	AC	OB	S ASSOCIATES	City of Pacifica				5) 7	
Í				Eng	ineers/Consultants	Pacifica, California	C							Ľ	-5	
	File No. 4497.0 December 2012 Log of Boring 1 - Skate Park Lot											(1	of 3)			

					LOG OF E	BORING 1 (Continued)) ①				X		GRAIN SIZE			DIR SHI	ECT		
DEPTH	SAMPLE NO.	TYPE	PENETRATION RESISTANCE	GROUNDWATER		DESCRIPTION		<pre>« MOISTURE</pre>	DRY DENSITY	LIQUID LIMIT	PLASTICITY INDE	e Gravel (>#4 sieve)	e Sand (#4 to #200 sieve)	e Fines (<#200 sieve)	COMPRESSIVE	Cohesion	Internal Friction Angle		
Teel			DIOWS/IL.		BORING C	CONTINUED FROM 28 FEET	ON FIGURE B-4 (1 OF 3)	70	105./11.*			70	70	70	кір5/11	p.s.i.			
- 30- - -	7		33		SILTY/CLA - reddish/ - fine to cr - dense - dry	YEY SAND WITH GRAVEL (S 'orangish brown oarse sand, mostly fine angul	SC/SM) ar gravel/rock	12				38	47		-► 9 9	ines % Silt % Clay			
- 35- - -	8		38					12				23	62	15	→ 5 10	INES % Silt % Clay	/		
- 40- - -	9		19		LEAN CLAN - grayish k - few fine - stiff - moist - grades c	f (CL) Due with yellow brown striatic sand, trace fine angular grave layier with depth	ons until 41' el/rock until 41'	21	110	37	20				5.30				
- 45- - -	10		66		CLAYEY/SI - grayish k - mostly fi - dense, c - moist/dr	ILTY SAND WITH GRAVEL (S blue and reddish/yellowish br ne sand, fine gravel emented y	SC/SM) own	14	123			18	47	35	→ 10 19	INES 5% Silt % Clay			
- 50- - -	11		28		FAT CLAY (- grayish k - few sanc - very stiff - moist BORING	CH) blue and orangish brown d, few silt CONTINUED AT 53 FEET 0	9N FIGURE B-3 (3 OF 3)	29	98	56	34				4.19				
OTES	1	See	Notes	on Fi	gure B-3, 1 of 3	3.													
Ž	_						DMC Water and		iror	m	n+				Fi	gure			
	JACOBSASSOCIATES Engineers/Consultants KIVIC Water and Environment City of Pacifica Wet Weather Basin Project Pacifica, California									E	-3								
	File No. 4497.0 December 2012 Log of Boring 1							Sk	ate	Pa	rk L	.ot			(2 of 3)				

					LOG OF BORING 1 (Continu	ed) ^①				X		GRAIN SIZE	1		DIF SH	RECT
ОЕРТН	SAMPLE NO.	TYPE	PENETRATION RESISTANCE	GROUNDWATER	DECODIDE	<u></u>	l Moisture	DRY DENSITY	LIQUID LIMIT	PLASTICITY INDE	Gravel >#4 sieve)	Sand #4 to #200 sieve)	Fines (<#200 sieve)	UNCONFINED COMPRESSIVE STRENGTH	Cohesion	Internal Friction Angle
feet	0,		blows/ft.	0		UN EET ON EIGUDE B-4 (2 OE 3)	%	lbs./ft.3	_	-	%	% %	- %	kips/ft.2	p.s.f.	
-					EGAN CLAY WITH SAND (CL)	EET ON FIGURE B-4 (2 OF 3)	+		_							
-55	12		22		- light gray and orangish brown - fine sand, few silt - very stiff - moist	- light gray and orangish brown - fine sand, few silt - very stiff - moist										
-60 - -	13		75		LEAN CLAY WITH SAND (CL) - grayish blue and reddish brown - fine sand, few to little silt - hard - moist/dry	I CLAY WITH SAND (CL) ayish blue and reddish brown ie sand, few to little silt ard oist/dry								9.04		
- 65- -	14		26		LEAN CLAY (CL) - reddish/orangish brown and gray - trace fine sand - very stiff - moist SILTY SAND (SM)	LEAN CLAY (CL) - reddish/orangish brown and grayish/yellowish brown - trace fine sand - very stiff - moist										
- - 70-					- orangish/reddish brown - fine sand - medium dense - moist				_		0	46	54	► 30 24	FINES D% Silt	t y
-	15		28		 SANDY LEAN CLAY (CL) bluish gray and reddish/yellowish fine sand, few silt moist very stiff 	brown	26	100			0	38	62		97	39°
- 75-					SILTY SAND (SM) and SANDY LEA - reddish brown and yellowish/gray - mostly fine sand modium dense and year, stiff	N CLAY (CL) ish brown										
-	16		22		- moist		27									
80-					BOTTOM OF BORING	3 AT 76 ½ FEET										
OTES	1	See	Notes	on Fi	gure B-3, 1 of 3.											
	JACOBSASSOCIATES RMC Water and Environment City of Pacifica							T	Fi	gure	;					
		_		Eng	ineers/Consultants	Pacifica, California		ato	Do	rlz I	ot			(2	of 2	
	File No. 4497.0 December 2012 Log of Boring 1							ลเซ	гd		. UL			(3	0 3)	'

- -
- •
- -
- -
- -
-
 - -
 - -
 - - -

5 ddYbX]I '7 '

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

File No. 4497.0

December 2012

Site C1 - Community Center Lot

Figure

C-1

RMC Water and Environment

Site C2 - Vacant Caltrans Parcel

Figure

C-2

Southwestly view of eastern portion of Site C2. 1 Site C2 is bounded by single family residential developement. Site C2 is approxiately 2 to 3 feet lower in elevation than surrounding developed land.

(2) Southwesterly view of western portion of Site C2. Site is bounded by sidewalk and Highway 1.

Photographs taken on May 10, 2012.

JACOBS ASSOCIATES

RMC Water and Environment City of Pacifica

Wet Weather Basin Project

Pacifica, California

Figure

C-3

Engineers/Consultants

Site C2 Photos - Vacant Caltrans Parcel December 2012

File No. 4497.0

Appendix D

RMC Water and Environment

City of Pacifica Wet Weather Basin Project Pacifica, California

File No. 4497.0

December 2012

Site D - Linda Mar PS Lot

Figure

D-1

					LOG OF BORING 2 (1)					×		GRAIN SIZE	l		DIR SHI	:ECT EAR
EPTH	MPLE NO.	ΡE	INETRATION SISTANCE	ROUNDWATER	LOCATION: Site D - Linda Mar Pum (see Figure D-1)	p Station Parking Lot	DISTURE	RY DENSITY	QUID LIMIT	ASTICITY INDE	avel t4 sieve)	Ind I to #200 sieve)	1 eS ≮200 sieve)	VCONFINED MIPRESSIVE RENGTH	hesion	ernal Iction Angle
E feet	SA	₽	Blows/ft.	©GF	DESCRIPTIO	N (2)	W %	Б lbs./ft. ³	ГІС	Ч	5 [°] %	Sa (#4	л <u>н</u> %	≤05 kips/ft.²	о р.s.f.	고고
-					Parking lot: 3 inches asphalt con CLAYEY SAND WITH GRAVEL (SC) - I - dark reddish brown - fine to coarse sand - fine to coarse angular gravel/crushe - organics (wood) @ 1-2'	crete										
5- - -	1 2		42		SILTY GRAVEL WITH SAND (GM) - Fi - brown and light green/white - fine to coarse sand, fine to coarse a - medium dense - dry/moist - cobbles @ 5'	II /	10				45	34	21			
-					SANDY LEAN CLAY (CL)											
10-	3		29		- very dark gray - fine sand - moist to wet		20	115			0	97	3			
- - 15-	4		40		- dark bluish gray - fine sand, trace fines - medium dense to dense - wet											
- - 20- -	5		10		PEAT (PT) WITH ORGANIC SILT/CLA - dark brown - mostly organics (wood and grass) - little black organic clay (OH) - strong sulfurous odor - medium stiff - wet	Y (OL/OH) Sample 5 45.3% Organic Matter	217									
- 25- -	6		pushed		FAT CLAY (CH) - BAY MUD - dark grayish blue - trace silt - wet - stiffer @ 27 1/2'	$\begin{array}{c} \hline \textbf{CONSOLIDATION TEST} \\ \hline \textbf{SAMPLE B-1-6} \\ C_{C} = 0.32 \\ P_{C} = 2.30 \text{ ksf} \end{array}$	42	79					-	1.12		
-					BORING CONTINUED AT 28 FEET	ON FIGURE D-4 (2 OF 3)										
NOTES	1 2	Drille Free	ed 09/ groun	′18/1 Idwat	12 with a Failing 1500 drill rig using a 5-incl ter level obscured during drilling due to wate	n tri-cone bit and mud rotary with a er-added drilling method. Static ed	a 30" (quilibr	drop by ium gro	y 140 bundw	lb. au ⁄ater (tomat depth	ic sar is unł	npling knowr	g hammo 1.	er.	
Γ	15					RMC Water and	Env	viror	nme	ent				Fi	gure	;
	L	J	AC	O E Engi	BSASSOCIATES ineers/Consultants	City of Pacifica Wet Weather Equalizatio Pacifica, California	n Ba	sin Pr	oject					D	-3)
		Fil	e No.	449	7.0 December 2012	Log of Boring 2 - Linda Mar PS Lot							(1 of 3)			

LOG OF BORING 2 (Continued)													DIF SH	:ECT EAR	
рертн	SAMPLE NO.	TYPE	PENETRATION RESISTANCE	GROUNDWATER	DECODIDITION	MOISTURE	DRY DENSITY	LIQUID LIMIT	PLASTICITY INDE	Gravel (>#4 sieve)	Sand (#4 to #200 sieve)	Fines (<#200 sieve)	UNCONFINED COMPRESSIVE STRENGTH	Cohesion	Internal Friction Angle
feet	<i>"</i>		blows/ft.	0	DESCRIPTION PODING CONTINUED EDOM 28 EEET ON EIGUDE D 2 (1 OF 2)	%	lbs./ft.3	_		%	%	%	kips/ft.2	p.s.f.	
- 30- -	7		17		LEAN CLAY (CL) - grayish green/blue with orangish brown mottling - trace to few coarse sand - stiff - wet	23	107	41	24				1.29		
- 35- - -	8		13		CLAYEY/SILTY SAND WITH GRAVEL (SC/SM) - olive brown/bluish green/orangish brown - fine to coarse sand, fine gravel - medium dense - wet	15				27	48	25		TINES 7% Silt % Clay	
40-					CLAYEY/SILTY SAND (SC/SM) - grayish blue - fine sand, few gravel - medium dense - wet										
	9		19		LEAN CLAY WITH SAND (CL) CONSOLIDATION TEST - grayish blue and orangish brown SAMPLE B-1-9 - fine to coarse sand Coarse 10.14	28 25	99 101						1.24		
45- - -	10		25		- stiff - wet - wet - grayish blue/orangish brown and reddish brown - fine to coarse sand, fine angular gravel - medium dense	16				22	58	20	► 11 8	FINES 2% Silt % Clay	
50-	50 11 62 62 CLAYEY/SILTY SAND WITH GRAVEL (SC/SM) 62 0 0 0 0 62 0 0 0 0 62 0 0 0 0 62 0 0 0 0 0 62 0 0 0 0 0 0 62 0 0 0 0 0 0 0 62 0 <td< td=""><td>→ F 8 6</td><td>FINES % Silt % Clay</td><td></td></td<>										→ F 8 6	FINES % Silt % Clay			
S	1	See	Notes	on Fi	igure D-3, 1 of 3.										
NOT															
	Г				RMC Water and	Env	/iror	nme	ent				Fi	gure)
	L	J	AC	O B Eng	ineers/Consultants City of Pacifica Wet Weather Equalization Pacifica, California	on Ba	sin Pr	oject	t				C)-3)
⊢	File No. 4497.0 December 2012 Log of Boring 2 - Linda Mar PS Lot									(2	of 3)				

					LOG OF BORING 2 (Continued	ied) ^①						GRAIN SIZE	1		DIF SH	RECT		
рертн	SAMPLE NO.	TYPE	PENETRATION RESISTANCE	GROUNDWATER	DESODIDITION		MOISTURE	DRY DENSITY	LIQUID LIMIT	PLASTICITY INDE	Gravel (>#4 sieve)	Sand (#4 to #200 sieve)	Fines (<#200 sieve)	UNCONFINED COMPRESSIVE STRENGTH	Cohesion	Internal Friction Angle		
feet			blows/ft.		BORING CONTINUED FROM 53 FEET	ON FIGURE D-3 (2 OF 3)	%	lbs./ft.³			%	%	%	kips/ft.2	p.s.f.			
55-	12		28		LEAN CLAY (CL) - bluish gray and light orangish brown - few coarse sand (dark reddish brown - very stiff - moist)	21	108	41	23				2.32				
- 60- - -	13		26		CLAYEY/SILTY SAND WITH GRAVEL (S - bluish gray and orangish brown - fine to coarse sand, fine angular grav - medium dense - moist	SC/SM) el	15				-	-	33					
- 65- - -	14		35		LEAN CLAY (CL) - bluish gray and reddish brown - few sand - few coarse gravel @ 65½ - very stiff - moist		23	103						3.69				
- 70- - -	15		22		CLAYEY/SILTY SAND (SC/SM) - dark grayish blue - fine to medium/coarse sand - medium dense to dense - moist to wet - clayey sand with trace black organic w	woody material (70 to 71 feet)	24				0	70	30					
- 75-	16		33		- thin layer of bluish gray CL with sand - thin layer of dark brown CL/ML @ 76'	@ 75'												
- - 80-					BOTTOM OF BORING AT	Γ 76 ½ FEET												
NOTES	1	See	Notes	on Fi	gure D-3, 1 of 3.													
	F		_			RMC Water and	Env	viror	nme	ent				Fi	gure)		
	L	J	AC	O E Eng	IS ASSOCIATES	City of Pacifica Wet Weather Equalizatio Pacifica, California	n Ba	sin Pr	oject					D	-3	6		
		Fil	e No.	449	7.0 December 2012	Log of Boring 2 - Linda Mar PS Lot								(3 of 3)				

Appendix E

Eilo No	44070
riie ino.	4497.0

December 2012

RMC Water and Environment

Site E - City Beach Parking Lot

Figure

Image: Construction of the parking lot and bathroom purposed of the parking lot and bath
Image: Second
 View of northern entrance to City Beach parking lot.
Photographs taken on May 10, 2012.
RMC Water and Environment Figure
JACOBSASSOCIATES City of Pacifica Engineers/Consultants Wet Weather Basin Project
File No. 4497.0 December 2012

Attachment B - Geotechnical Memorandum for Site A

JACOBS ASSOCIATES

Engineers/Consultants

Geotechnical Memorandum

May 17, 2013

Mr. Tim Harrison RMC Water and Environment 2011 N. Main Street, Suite 400 Walnut Creek, CA 94596

Subject: Preliminary Test Boring at Basin Site A Pacifica Wet Weather Equalization Basin Study

Dear Mr. Harrison:

Jacobs Associates is pleased to submit this Geotechnical Memorandum presenting the findings of preliminary test boring B-3 drilled at Basin Site A (i.e., Caltans Parking Lot), located on the northeast of Linda Mar Boulevard northwest of De Soto Drive (see Figure 1).

Jacobs Associates previously drilled preliminary test boring Borings B-1 and B-2 at the Skate Park Lot (Basin Site B) and at the Linda Mar Pump Station (Basin Site D). The logs of test Borings B-1 and B-2 are included in Geotechnical Engineering Siting Study (Jacobs Associates, 2012).

GEOTECHNICAL FIELD INVESTIGATION AND LAB TESTING

Preliminary Project Test Boring B-3

Preliminary project test Boring B-3 was drilled and logged on April 16, 2013. Boring log legends and the Boring B-3 log are provided in Appendices A and B, respectively. Boring B-3 was drilled with a B-57 truck-mounted drill rig. Rotary wash methods and a 5-inch-diameter tri-cone drill bit were to drill to a depth of 100.5 feet.

Relatively undisturbed samples were obtained by driving a 2.5-inch inside diameter (ID), 3-inch outside diameter (OD), Modified California Sampler (MCS) containing brass liners in to the bottom of the boring at the depth indicated on the log. Disturbed soil samples were obtained by driving a 1.4-inch ID, 2.0-inch OD Standard Penetration Test (SPT) sampler into the bottom of the boring at the depth indicated on the log. An automatic 140-pound hammer falling 30 inches per blows was used to drive MCS and SPT samplers.

The number of blows required to drive the samplers the last 12 inches of an 18-inch drive are recorded on the boring logs as penetration resistance (blows/foot). MCS penetration resistance values are field blow counts that were not reduced to equivalent SPT N-values. Soil samples retrieved from the test borings were examined for classification per ASTM D2488, logged, and sealed to preserve their natural moisture content for laboratory testing.

Geotechnical Memorandum - Preliminary Test Boring at Basin Site A May 17, 2013 Page 2 of 3

Classifications systems used to log soil samples are provided in Appendix A. Descriptions of soils provided on the boring logs in Appendix B and are based on observations during drilling and sampling and on the results of laboratory tests.

The test boring was backfilled with grout in accordance with County permit requirements. No obvious contaminated soil and/or contaminated groundwater were noted during drilling. Drilling spoils were placed in 55 gallon drums and disposed by the Pitcher Drilling at a landfill site. Testing of drummed soil may be done by the landfill site. Any environment testing of the drilling spoils by land fill site will be provided to RMC.

Laboratory Testing

Moisture content, unit weight, Atterberg limits (i.e., liquid limit and plasticity index), grain size analysis, and unconfined compression tests were performed on samples retrieved from the test boring to evaluate their physical characteristics and engineering properties. The results of these tests are included on the boring log in Appendix B and in figures in Appendix C.

GENERAL SUBSURFACE SOIL CONDITIONS

Fill (Approximately 0 to 4 feet)

Basin Site A is covered with approximately 4-inch thick layer of asphaltic concrete pavement. Underlying the pavement to a depth of about 4 feet, fill consisting of medium to high plasticity sandy clay with gravel was encountered.

Lagoon Deposits (Approximately 4 to 14.5 feet)

Below the fill, medium stiff Lagoon Deposits were encountered a depth of about 8.5 feet. Below the medium stiff Lagoon Deposits, a layer of very soft Lagoon Deposits were encountered to a depth of about 14.5 feet.

Stiff Clay Deposit (Approximately 14.5 to 19 feet)

Below the very soft Lagoon Deposit, a relatively thin layer of stiff clay was encountered.

Very Stiff and Medium Dense/Dense Deposits (Approximately 19 to 64 feet)

Below the stiff clay deposits, very stiff and medium dense to dense deposits consisting of interlayered clays with varying amounts of sand and gravel and dense silty and clayey sand with varying amounts of gravel to depths of about 64 feet. SPT blow counts generally ranged from 17 blows/foot (based on corrected MCS blow count) to 29 blows/foot.

Layers of hard sandy clay with gravel and very dense clayey sand with gravel having a blow count of 61 blows/per foot were encountered between depths of about 37 and 45 feet.

Geotechnical Memorandum - Preliminary Test Boring at Basin Site A May 17, 2013 Page 3 of 3

Very Dense Deposits (64 feet to 79 feet)

Between a depth of about 64 feet and 79 feet, very dense silty sand with gravel deposits were encountered. SPT blow counts ranged from 60 to 67 blows per foot.

Hard and Very Dense Deposits (79 feet to 100 feet)

Below a depth of about 79 feet, hard clays with vary amounts of sand and very dense sand with gravel and varying amounts of clay and silt were encountered. SPT blow counts ranged from 60 blows per foot to 50 blow/3 inches. Note that 50 blows/3 inches was recorded at a depth of 100 feet.

GROUNDWATER CONDITIONS

Groundwater was obscured during drilling due to water-added drilling method. Sampling encountered wet soils at a depth of 10 feet.

CLOSE

We appreciate the opportunity to provide RMC Water and Environment and the City of Pacifica with this geotechnical memorandum presenting the findings of preliminary test boring B-3 drilled at Basin Site A for City's Equalization Basin Preliminary Site Assessment project. If you have any questions regarding this memorandum, please call.

Sincerely yours,

JACOBS ASSOCIATES

RAK

Robert Kahl, PE, GE Senior Associate

Attachments: Appendix A through Appendix C

Reference: 4497.0

JACOBS ASSOCIATES

Engineers/Consultants

County of San Mateo

City of Pacifica Wet Weather Basin Project Pacifica, California Boring Location Map Figure

1

File No. 4497.0

May 2013

Appendix A

KEY TO BORING LOGS

Shelby tube sample

Grab sample

1.4" I.D./2" O.D. Standard Penetration Test (ASTM D1586) sampler (SPT)

2.5" I.D./3" O.D. Modified California sampler (MCS) with brass liners

NSR No sample recovery

RELATIVE DENS	<u>SITY</u>	<u>CONSISTENCY</u>							
SANDS AND GRAVELS	SPT, N	SILTS AND CLAYS	SILTS AND CLAYS SPT, N						
VERY LOOSE	0-4	VERY SOFT	0-2	0-0.25					
LOOSE	4-10	SOFT	2-4	0.25-0.50					
MEDIUM DENSE	10-30	MEDIUM STIFF	4-8	0.50-1.00					
DENSE	30-50	STIFF	8-15	1.00-2.00					
VERY DENSE	50+	VERY STIFF	15-30	2.00-4.00					
		HARD	30+	>4.00					
Reference: Terzadbi K and P	ock R SOII	MECHANICS IN ENGINEE	RING PRAC	TICE 2nd ed					

John Wiley and Sons, New York, 1967. Page 341 Table 45.1 and page 347 Table 45.2.

	MOISTURE CONDITION	CONSTITUENT DESCRIPTIO							
DESCRIPTION	CRITERIA	DESCRIPTION	CRITERIA						
DRY MOIST WET	Absence of moisture, dusty, dry to the touch Damp but no visible water Visible free water, usually soil is below water table	TRACE FEW LITTLE SOME MOSTLY	less than 5% 5% to 10% 15% to 25% 30% to 45% 50% to 100%						
Reference: ASTM D	2488, Table 3 - Criteria for Describing Moisture Condition	Reference: ASTM	D2488, Note 15						

NOTES:

- 1. Lines separating strata in the logs represent approximate boundaries only and are dashed where strata change depth is less certain and queried where strata change depth is not known. Actual strata change may be gradual. No warranty is provided as to the continuity of strata between borings. Logs represent the subsurface section observed at the boring location on the date of drilling only.
- 2. Penetration resistance (blows/ft.) are the last 12" of an 18" drive using a 140-pound hammer falling 30 inches per blow (Failing 1500 drill rig) unless noted otherwise. The penetration resistance values noted on the logs are actual blows per foot of penetration for the respective sampler type (i.e., MCS sampler penetration resistance has not been reduced to an equivalent SPT "N" value).
- 3. Where noted on the boring logs, slough is defined as material from the bore hole walls which collapses or flows into and partially fills the bore hole on removal of the hollow stem auger plug or solid stem augers. The presence of slough within the bore hole can render drive sampling impossible (samplers fill entirely with slough) and invalidate the blow count.

JACOBS ASS	OCIATES	RMC Water and Environment	Figure
Engineers/Con	sultants	Wet Weather Equalization Basin Project Pacifica, California	A-1
File No. 4497.0	May 2013	Boring Log Legend	(1 of 2)

UNIFIED SOIL CLASSIFICATION SYSTEM

		SYMBOLS AND C		GROUP SYMBOL	GROUP NAME ^B
		Clean Gravels	$Cu \ge 4$ and $1 < Cc < 3$ E	GW	Well-graded gravel F
COARSE-GRAINED	GRAVELS	< 5% fines ^C	Cu < 4 and/or $1 > Cc > 3$ ^E	GP	Poorly graded gravel F
SOILS More than 50%	coarse fraction retained	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel F,G,H
retained on	ON NO. 4 SIEVE	> 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
NO. 200 SIEVE		Clean Sands	$Cu \ge 6$ and $1 < Cc < 3$	SW	Well-graded sand
	50% or more of coarse	< 5% fines ^D	Cu < 6 and/or 1 > Cc > 3 E	SP	Poorly graded sand
	fraction passes No. 4	Sands with Fines	Fines classify as ML or MH	SM	Silty sand G,H,I
	sieve	> 12% fines D	Fines classify as CL or CH	SC	Clayey sand G,H,I
		Inorgania	PI > 7 plots on or above "A" line	J CL	Lean clay K,L,M
FINE-GRAINED	SILTS AND CLAYS		PI < 4 plots below "A" line ^J	ML	Silt K,L,M
50% or more	Liquid limit < <u>5</u> 0	Organic	Liquid limit-oven dried		Organic Clay K,L,M,N
passes the		Organic	Liquid limit-not dried		Organic Silt K,L,M,O
		Inorganic	PI plots on or above "A" line	СН	Fat clay K,L,M
	SILIS AND CLAYS		PI plots below "A" line	МН	Elastic silt K,L,M
		Organia	Liquid limit-oven dried		Organic Clay K,L,M,P
		Organic	Liquid limit-not dried	<u> </u>	Organic Silt K,L,M,Q
HIGHLY ORGANIC SOILS	j	Primarily organic ma	atter, dark color and organic odor	PT	Peat
NOTES:					

- A Based on the material passing the 3-in. (75mm) sieve.
- B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- C Gravels with 5% to 12% fines require dual symbols: GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- D Sands with 5% to 12% fines require dual symbols: SW-SM well-graded sand with silt SW-SC well-graded sand with clay SP-SM poorly graded sand with silt SP-SC poorly graded sand with clay

$$E Cu = \frac{D_{60}}{D_{10}} Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$$

- F If soil contains >_15% sand, add "with sand" to group name.
- G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.
- H If fines are organic, add "with organic fines" to group name.
- I If soil contains >_15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in hatched area, soil is a CL-ML (silty clay).
- K If soil contains 15% to 29% plus No. 200, add "with sand" or "with gravel", whichever is predominant.
- L If soil contains >_30% plus No.200, predominantly sand, add "sandy" to group name.
- M If soil contains >.30% plus No.200, predominantly gravel, add "gravelly" to group name.
- **N** $PI \ge 4$ and plots on or above "A" line.
- O PI < 4 or plots below "A" line.</p>
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

JACOBS ASSOCIATES

Engineers/Consultants

RMC Water and Environment

Figure

City of Pacifica Wet Weather Equalization Basin Project Pacifica, California **Boring Log Legend**

File No. 4497.0

May 2013

(2 of 2)

Appendix B

					LOG OF BO	RING B-3 ^①					×		GRAIN SIZE	l		DIR SH	ect Ear
	NO		ATION NCE	WATER	LOCATION: S	See Figure 1		Ř	ISITY	IMIT	ITY INDE		0 sieve)	(e)	INED SSIVE TH	-	Angle
EPTH	AMPLE	ΥΡΕ	ENETR/	ROUND				OISTUF	RY DEN	I dindi	LASTICI	iravel *#4 sieve)	and 44 to #200	ines #200 sie	INCONF OMPRE TRENG	ohesior	nternal riction /
☐ feet	S	F	blows/ft.	3		DESCRIPTION	2	2 %	ے lbs./ft. ³			° %	% %	"%	⊃ഠഗ kips/ft.²	p.s.f.	느뜨
_					Parking lot	E 6 inches asphalt concre											
-					- very dark g - fine to coar - dry to mois - clayey sanc	ray rse sand, rounded gravel t at 3' d (SC) with coarse gravel fr	om 3½24' (gravels up to 4")										
5- - -	1		9		LEAN TO FAT - dark bluish - trace sand - trace orgar - medium sti - moist	CLAY (CL/CH) - BAY MU grey nics iff	D	39	80								
- 10- - -	2 2 LEAN CLAY (CL) - BAY MUD - very dark bluish grey - trace organics - very soft - wet								88	38	20				0.26		
- 15- - -	3		19		LEAN/FAT CL - very dark o - few sand, f - stiff - moist	LAY (CL/CH) live brown ew silt		23	100						3.35		
- 20- - -	4		36		SILTY SAND V - dark gray w - mostly fine - pockets of - medium de - moist/wet	MITH GRAVEL (SM) vith varicolored brown/red/ to coarse sand with fine g clay/silt ense	/blue ravel and few coarse gravel	14	120			21	61	18	► 12 69	INES 2% Silt % Clay	
- 25- -	5 26 SANDY LEAN CLAY (CL) - dark bluish gray and yellowish, r - fine to coarse sand, fine gravel - very stiff - moist					CLAY (CL) gray and yellowish, reddis rse sand, fine gravel	h brown	19	113						3.14		
-					BORING C	ONTINUED AT 28 FEET 0	N FIGURE B-1 (1 OF 4)										
NOTES	103	Drill See Free	ed 04, report grour	/16/1 Appendwat	13 with a Failing 1 Endices A and C fo er level obscured	500 drill rig using a 4-inch o r definitions, lab test result during drilling due to water-	drag bit and mud rotary with a 30 s, and additional soil description added drilling method. Static ed	0" dro Is. quilibr	p by 14 ium gro	10 lb. oundv	auton vater (natic : depth	sampl is unł	ing ha knowr	ammer. n.		
				1.00			RMC Water and	Env	/iror	nme	ent				Fi	gure	;
	L	J	AC	O B Eng	ISASSO	CIATES Itants	City of Pacifica Wet Weather Equalizatio Pacifica, California	n Ba	sin Pr	oject	t				B	-1	-
	File No. 4497.0 May 2013						Log of Boring B-3 (1 of 4)										

					LOG OF BORING B-3 (Continu	led) ^①				×		GRAIN SIZE	1		DIR SH	RECT EAR
ЕРТН	AMPLE NO.	YPE	ENETRATION ESISTANCE	ROUNDWATER			IOISTURE	RY DENSITY	iquid limit	LASTICITY INDE	ravel #4 sieve)	and 4 to #200 sieve)	ines #200 sieve)	NCONFINED OMPRESSIVE TRENGTH	ohesion	iternal riction Angle
⊡ feet	Ś	F	blows/ft.	ß	DESCRIPTION		≥ %	⊡ Ibs./ft.³		₫	<u>ማ</u> () %	່ທ <u>ູ</u> ສ %	⊑≗ %	່⊃ວ່ວ່ທ kips/ft.²	Ŏ p.s.f.	드뇬
-					BORING CONTINUED FROM 28 FEE	T ON FIGURE B-1 (1 OF 4)								L -		
- 30- - -	6		21		CLAYEY SAND FEW GRAVEL (CL) - dark greenish, bluish grey - fine to coarse sand, trace fine to few - stiff/very stiff - moist/wet - sandier with depth	v angular gravel	23	104			5	50	45	→ 3 15	FINES D% Sil 5% Cla	t y
- 35- - -	7		29		CLAYEY SAND (SC) - brownish/yellow/red - fine to coarse sand, trace fine grave - little fines - medium dense - wet	I										
- 40- - - -	40- 8 61 SANDY LEAN CLAY WITH GRAVEL (CL) and CLAYEY SAND WITH GRAVEL (SC) - dark brown with yellow and red - fine to coarse sand, mostly fine angular gravel - hard/very dense - moist										57	34	9			
45- - -	9		19		LEAN CLAY WITH SAND (CL) - olive brown and reddish brown - fine to coarse sand - very stiff - moist											
- 50- - - - -									45	24				4.19		
TES	1	See	Notes	on Fi	l igure B-1, 1 of 4.						[
Ŋ								_								
	Γ	1	AC	OF	S ASSOCIATES	RMC Water and	En	/iror	nme	ent				Fi	gure	•
	Engineers/Consultants Pacifica. California						n Ba	sin Pr	oject	t				E	-1	-
	File No. 4497.0 MAY 2013 Log of Boring							Log of Boring B-3						(2	of 4)	

	LOG OF BORING B-3 (Continued) ^①											X		GRAIN SIZE			DIF SH	RECT EAR
DEPTH	SAMPLE NO.	ТҮРЕ	PENETRATION RESISTANCE	GROUNDWATER		DESC	RIPTION		R MOISTURE	DRY DENSITY	LIQUID LIMIT	PLASTICITY INDE	و Gravel (>#4 sieve)	Sand (#4 to #200 sieve)	€ Fines (<#200 sieve)	COMPRESSIVE COMPRESSIVE STRENGTH	Cohesion	Internal Friction Angle
feet			blows/tt.		BORING	CONTINUED FROM	VI 53 FEET	ON FIGURE B-1 (2 OF 4)	%	IDS./π.3			%	%	%	κips/π.²	p.s.r.	
55-	11		36		LEAN/FAT - dark blu - trace or - very stif - moist	CLAY (CL/CH) iish gray ganics f			14	110								
60- -	-12		-40-		EAT CLAY				28	99	54	28				6.02		
65-	67 67 67 67 67 67 67 FAT CLAY WITH SAND (CH) - olive brown/gray/blue - very fine sand/silt, trace mica flakes - very stiff - moist SILTY SAND WITH GRAVEL (SC) - dark greenish/bluish gray - fine to coarse sand, fine angular gravel - trace mica flakes - very dense - wet								14				38	47	15	■ F 10 59	INES D% Silt % Clay	
70- - -	14		60						15								INES	
75-							79 EEET ()		28				20	61	19	→ 13 69	% Silt % Clay	
- - -	(1)	Sec	Notos	On Fi														
NOTE	Ŀ	000	1 10103	onn														
		J	A C e No.	O B Eng 449	SASS ineers/Con 7.0	O C I A T E S sultants May 201	3	RMC Water and City of Pacifica Wet Weather Equalization Pacifica, California Log of Boring B-	Env on Ba	/ iror sin Pr	me	ent				Fi (3	gure 6–1	

					LOG OF BORING B-3 (Continued) $^{ imes}$					X		GRAIN SIZE			DIRECT SHEAR	
EPTH	AMPLE NO.	YPE	ENETRATION ESISTANCE	ROUNDWATER			IOISTURE	RY DENSITY	iquid limit	LASTICITY INDE	ravel #4 sieve)	and 4 to #200 sieve)	ines #200 sieve)	NCONFINED OMPRESSIVE TRENGTH	ohesion	iternal riction Angle
⊡ feet	Ś	F	blows/ft.	ß	DESCRIPTION		≥ %	⊡ Ibs./ft.3		₫	ቻ () %	Ϋ́ . %	⊑≗ %	ລັບ່ທ kips/ft.²	Ŏ p.s.f.	드표
-					Boring Continued From 78 Feet	ON FIGURE B-1 (3 OF 4)										
80- -	16		79/11½		LEAN CLAY/SILT WITH SAND (CL/ML) - dark yellowish brown and bluish gray - very fine sand, trace mica flakes - hard - moist/dry) Г	20	112						7.07		
-					SANDY LEAN CLAY WITH GRAVEL (CL) - yellow/brown/red/green - fine to coarse sand, mostly fine angul - hard) ar gravel (rock-like)								2	FINES 1% Sil	t
85- - -	17		59		- moist/dry						-	73	 27		% Clay	
90- - -	18		77		LEAN CLAY WITH SAND (CL) - very dark bluish gray - fine sand, few to little silt - hard - moist		19	113	32	15				9.23		
- 95- -	19		64		SILTY/CLAYEY SAND WITH GRAVEL (SC) - bluish gray/brown/yellow - fine to coarse sand, mostly fine angular gravel - very dense - wet											
- - 100-	20		50/3'	1	CLAYEY TO SILTY SAND WITH GRAVEI - dark grey with yellow/reddish brown - fine to coarse sand with fine to coarse - very dense - wet	L (SC/SM)	19	113			26	58	16	► 10 69	TNES D% Silt % Clay	
-		BOTTOM OF BORING AT 100 ¾ FEET														
NOTES	1	See	Notes	on Fi	gure B-1, 1 of 4.											
JACOBSASSOCIATES RMC Water and Environment City of Pacifica										Figure						
Engineers/Consultants File No. 4497.0 May 2013					ineers/Consultants 7.0 May 2013	Pacifica, California Log of Boring B-3								(4 of 4)		

- -
- •
- -
- -
- -
-
 - -
 - -
 - - -

5 ddYbX]I '7 '

	UNC	ONFIN	IED C	OMPRES	SION	IEST	
	Compressive Stress, ksf	2.5		5	7.5		
<u></u>			Axial	Strain, %	2		
Sample No.	ath kef			2 2/17	2 14	14	
Undrained shear	strength kef			1 674 1 572		72.	
Failure strain %	strongen, Kor			81 4.0)	
Strain rate. in./m	iin.			0.08 0.0		8	
Water content.	6			22.9	19.3	2	
Wet density, pcf				123.2	134.	.8	
Dry density, pcf				100.2	113.	.2	
Saturation, %				90.7	105.	.7	
Void ratio				0.6818	0.48	94	
Specimen diame	eter, in.			2.42	2.42	2	
Specimen heigh	t, in.			4.92	4.94	4	
Height/diameter	ratio			2.04	2.04	4	
Description: Se	e remarks						
LL =	PL =	PI =	1	Assumed GS	S= 2.70	Type: Mod.Cal.	
Project No.: 449 Date Sampled: Remarks: #1/3A @ 16-16.5 LEAN CLAY(CL	97.0 :Stiff,very dk. gre	y sandy	Client: Projec Source	Jacobs Associate t: Pacifica Wet W e of Sample: B-	es Veather Ba -3	asin	
#2/5A @ 26-26.5':Very stiff,dk. grey sandy CLAY(CL). Plate C-3(2of4)			UNCONFINED COMPRESSION TEST Soil Mechanics Lab Oakland, California				

	UNC	ONFIN	IED CO	OMPRES	SION	TEST					
	10										
	7.5										
	ompressive Stress,					1	2				
	2.5										
Sample No.	0	5	Axial S	10 Strain, %	15	20					
Unconfined stre	ngth, ksf			4.188	6.02	2					
Undrained shear	strength, ksf			2.094	3.01	1					
Failure strain, %				6.1	11.0)					
Strain rate, in./m	iin.			0.08	0.08	3					
Water content, 9	6			22.1	27.6	5					
Wet density, pcf				130.7	126.	5					
Dry density, pcf				107.0	99.2	2					
Saturation, %				103.9	106.	4					
Void ratio				0.5746 0.6998		98					
Specimen diame	eter, in.			2.42	2.42	2					
Specimen heigh	t, in.			4.91 4.93		3					
Height/diameter	ratio			2.03	2.04	+					
Description: Se	e remarks	DI -		Assumed CS	= 2 70	Type: Mo	d Cal				
Project No : 140)70		Client	Incohe Associate							
Date Sampled: Remarks:			Project	Pacifica Wet W	eather Ba	sin					
#1/10B @ 50.5-5 CLAY(CL).	l':V.stiff,v.dk. gr.l	LN. FAT	Source	of Sample: B-	3						
$\pm 1 = 1 = 1 = 1 = 1$	CLAY(CH). Plate C-3(3of4)				Salar To Barton	Contraction and the second	UNCONFINED COMPRESSION TEST Soil Mechanics Lab Oakland, California				

	UN	CONFIN	ED C	OMPRES	SION	TEST	Г	
	10							
							2	
	7.5	/						
4			\wedge					
3	vý.							
	lies							
0	0 2 5							
			1				—1	
			_					
	5 /							
	25							
	2.0							
						_		
						_		
	0	5		10	15	20		
			Axial	Strain, %				
Sample No.				1	2			
Unconfined stren	gth, ksf			7.066	9.23	32		
Undrained shear	strength, ksf			3.533	4.61	6		
Failure strain, %				6.9	10.4			
Strain rate, in./mi	n.			0.08	0.08			
Wet density not)			134.1	18.5			
Dry density, per				112.2	113.4			
Saturation, %				104.9	102.	.4		
Void ratio				0.5019	0.480	69		
Specimen diamet	ter, in.			2.42	2.42	2		
Specimen height	, in.			4.96	4.8	1		
Height/diameter r	atio			2.05	1.99	9		
Description: See	remarks.	PI =		Assumed GS	S= 2 70	Type	Mod Cal	
Project No · 440	7.0		Client	Jacobs Associate	2.10	. ypc.	moucun	
Date Sampled:	/			Jacous Associati				
Remarks:			Project	t: Pacifica Wet V	Veather Ba	asin		
#1/16B @ 80.5-81	':V.stiff,dk.gr. s	andy			-			
CLAY(CL). #2/18B @ 90.5-91':Hard,v.dk.gr.LEAN CLAY(CL). Plate C-3(4of4)			Source	Source of Sample: B-3				
			UNCONFINED COMPRESSION TEST Soil Mechanics Lab					
								Oakland, California

Attachment C - Limited Site Plan for Site A

DRAFT Technical Memorandum

City of Pacifica – Wet Weather Equalization Basin Site Feasibility Evaluation

Subject:Limited Site Plan For Site APrepared For:Maria AguilarPrepared by:Tim HarrisonReviewed by:Steve Clary, Gisa JuDate:October 11, 2013Reference:0297-001

1 Background and Purpose of Technical Memorandum

The 2011 Collection System Master Plan prepared by RMC for the City of Pacifica (City) recommends construction of a flow equalization facility in the vicinity of the Linda Mar Pump Station to address wet weather issues in the City's sanitary sewer system. RMC has performed a wet weather equalization basin site feasibility evaluation for the City. Based on that evaluation, the City has identified Site A as a potential implementation site. This technical memorandum (TM) refines the location of the basin and appurtenant facilities within Site A. This TM also presents three site plan alternatives that will be used for further discussion and evaluation by City staff and elected officials.

2 Summary of Findings

This TM analyzes three alternative locations for basin placement within Site A. Key conclusions include:

- Construction of the basin at the northern end, southern end, or middle of the parcel is considered technically feasible. Construction of the basin at the southern end of the parcel is limited to a smaller footprint and has a corresponding increase in required basin depth.
- By locating the basin at the northern end or southern end of the parcel, the facilities would have less impact on the commercial development potential of the site than a basin located in the middle of the parcel.
- Flood protection from a 1% chance flood event is possible. Raising only the entry points to the basin and critical equipment would maintain a level grade over more of the parcel than raising the entire basin. By limiting the raised portion of the basin, impacts on commercial development would be reduced while still providing the necessary flood protection.

3 Parcel Description

Site A, shown in Figure 1, is one of the City's potential sites for the equalization basin.

Site A is currently owned by Caltrans. As State property, there is no official parcel boundary on the southwest side along Linda Mar Blvd. Should parcel acquisition move forward, Caltrans will establish all of the boundaries through their mapping and legal description generation. It is assumed however that the parcel boundary would be similar to State Parcel 024609-01-01, as shown in Appendix 1.

As can be seen in Figure 1, Site A is bounded on the southwest and southeast by Linda Mar Blvd. and De Solo Dr. There is a gas station to the northwest. The northeast boundary is bordered by a fence and tree line which separates Site A from numerous residential properties. Site A currently has multiple uses. The southeast portion is used by Caltrans to support construction of the Devils Slide tunnels. The remaining portion of Site A is used by SamTrans, as allowed by Caltrans, as a bus station with associated parking. It

appears that SamTrans uses a portion of Site A as a turnaround and staging area for out-of-service buses. The proposed General Plan update also identifies Site A as mixed use. This means that any infrastructure placed on the site (e.g. the basin and appurtenances) would need to accommodate City revenue generating uses, such as retail, hotel, and residential development.

4 Criteria for Evaluation of Alternative Locations within Site A

In addition to the 2.1 million gallon equalization basin, there are several other facilities that will need to be located in close proximity to the basin. These include a soil bed odor filter, an operations shed to house pump controls and a generator, and influent and effluent pipelines. Due to the large size of Site A however, the basin and appurtenant facilities will not require the entire available area. The City therefore has the ability to select a location for the project facilities within Site A. While certain criteria were used to prioritize Site A from the other potential general construction sites, new criteria that are more applicable to local siting are used to refine where within Site A the equalization basin should be located. Those criteria include:

• **Construction Area** – Construction of the basin will require approximately a 10-foot wide perimeter around the limit of the basin structure and a separate 50-foot by 50-foot area next to the basin for the crane and spoil stock piling. Some additional space requirements are anticipated for the soil bed filter and operations shed. Pipeline construction area requirements are dependent on the installation method and materials but are not anticipated to impact location preference. The preferred location should have adequate room for construction. It is possible to better meet this criteria by reducing the diameter of the equalization basin, but that would be to the detriment of the location's ability to fulfill the basin depth criteria described below.

- **Basin Depth** A shallow basin is preferred to a deep basin, as there are advantages to operation and maintenance of the facility as well as potential cost implications. Since there is a required storage volume, depth of the basin is reduced by increasing the diameter of the basin. As implied above, this criteria is inversely correlated to the Construction Area criteria above: with a shallower basin the area available for construction and staging is reduced.
- Impacts to Other Parcel Uses As described above, there are multiple existing uses for Site A. While Caltrans will have vacated their construction support area by the time of construction, it is City's intent to allow SamTrans to continue to utilize the Site A property for continued operations at least through the current lease. The preferred location should have reduced impacts, compared to other locations, to SamTrans operations during and after construction. The preferred location should also allow for future development of the parcel that is consistent with the proposed General Plan land use.

Minimizing impacts to residences was initially considered as a criteria, but due to the row of houses along the northeast side of the parcel, there was no differentiation between the alternative locations within the site. Construction methods have been identified that will minimize the impacts to residents during construction, and measures will be included in the project design to reduce long-term impacts such as potential short-term odors. Final design will also seek to reduce visual and other impacts to local residents.

5 Evaluation of Alternative Locations within Site A

Three locations within Site A have been identified and evaluated against the criteria outlined in Section 4. Site A-1 is the furthest north of the three evaluated locations and the closest to the gas station. Site A-2 is the furthest south of the three evaluated locations and the farthest from the gas station. Site A-3 is located between sites A-1 and A-2 where the parcel starts to narrow. Layout concepts for purposes of examining available area and impacts associated with sites A-1, A-2, and A-3 are provided in Figures 2, 3, and 4, respectively. These figures were developed for comparison purposes only and are not intended to represent actual site layouts. As such, basin diameters are maximized while maintaining the construction area minimum requirements, and simplified layouts of the major features and space constraints are presented.

Figure 2: Site A-1 Layout for Comparison

Figure 3: Site A-2 Layout for Comparison

Figure 4: Site A-3 Layout for Comparison

Based on the information shown in Figure 2, Site A-1 compares to the three evaluation criteria as follows:

- Construction Area This location could provide adequate construction and staging room.
- Basin Depth The diameter of the basin shown is 88 feet. The associated inner diameter, which is more relevant to storage, is assumed to be 81 feet. The active storage depth at this site would be about 55 feet and the vertical drop from ground surface to top of the basin foundation would be about 70 feet. This depth is well within the standard application of the assumed cutter soil mix construction method.
- Impacts to Other Parcel Uses Locating the basin at Site A-1 would require an adjustment to the bus stop configuration and routing within the parcel. These changes appear to be possible, particularly with the additional space afforded by the vacated Caltrans construction offices. Pipeline construction impacts would be less than at the other two evaluated locations due to proximity to the diversion points. Construction would require approximately half of the currently used area (not including the Caltrans construction area). The site could be arranged to accommodate some types of future development. It is located on the northern end of the parcel, leaving a large consolidated area for future development of commercial structures.

Based on the information shown in Figure 3, Site A-2 compares to the three evaluation criteria as follows:

- Construction Area This location could provide adequate construction and staging room.
- Basin Depth The diameter of the basin shown is 78 feet. The associated inner diameter, which is more relevant to storage, is assumed to be 71 feet. The active storage depth at this site would be about 72 feet and the vertical drop from ground surface to top of the basin foundation would be about 87 feet. This depth is within the standard application of the assumed cutter soil mix construction methodology.

• Impacts to Other Parcel Uses – Locating the basin at Site A-2 would likely not require SamTrans to alter the bus stop or adjust the routing within the parcel except for short periods of time for construction of the influent pipelines. Construction and all facilities (other than pipelines) could likely be limited to the area currently reserved for the Caltrans Devils Slide Project parking and construction trailers. The site could be arranged to accommodate some types of future development. It is located on the southern end of the parcel, leaving a large consolidated area for future development of commercial structures

Based on the information shown in Figure 4, Site A-3 compares to the three evaluation criteria as follows:

- Construction Area This location could provide adequate construction and staging room.
- Basin Depth The diameter of the basin shown is 98 feet. The associated inner diameter, which is more relevant to storage, is assumed to be 91 feet. The active storage depth at this site would be about 44 feet and the vertical drop from ground surface to top of the basin foundation would be about 59 feet. This depth is well within the standard application of the assumed cutter soil mix construction method.
- Impacts to Other Parcel Uses Locating the basin at Site A-3 would require adjustment to the bus stop configuration and routing within the parcel. Pipeline construction impacts to SamTrans would be similar to those at Site A-2. The majority of the basin construction could be limited to the area currently reserved for the Caltrans Devils Slide Project parking and construction trailers. A new curb cut to Linda Mar Blvd. would be needed to allow access to the parcel from the street without impacting the construction area. The site could be arranged to accommodate some types of future development. However, the basin would be in the middle of the parcel, which would place the facilities in the middle of future development of the site. Although parking spaces could be placed on the roof of the basin, construction of commercial structures would not be practical on the basin roof. Therefore, the basin would limit the development potential of the site to a greater degree than the other two alternatives discussed herein.

Table 1 summarizes a comparison of the three sites using the three criteria as the basis for that comparison.

	Site A-1	Site A-2	Site A-3		
Construction Area	Adequate construction area is available.	Adequate construction area is available.	Adequate construction area is available.		
Basin Depth	Basin at this site would	Basin at this site would	Basin at this site would		
	likely be deeper than at	likely be the deepest of	likely be the shallowest		
	Site A-3 but shallower	the three evaluated	of the three evaluated		
	than at Site A-2.	locations.	locations.		
Impacts to Other	This location would	This location would	This location would		
	incur mitigable impacts	incur the least impact on	incur mitigable impacts		
	on existing parcel uses.	existing parcel uses.	on existing parcel uses.		
Parcel Uses	Would allow the	Would allow the	Would bisect the parcel,		
	southern 75% of parcel	northern 75% of parcel	leaving two smaller		
	to be available for future	to be available for future	areas for future		
	commercial structures.	commercial structures.	commercial structures.		

Table 1: Comparison Matrix of Three Locations

Based on this evaluation, the City would prefer either Site A-1 or Site A-2 over Site A-3. All of these sites are technically feasible but locating the basin at Site A-3 would reduce the likelihood of selling for redevelopment the remaining portions of the parcel that would be left on either side of the basin. Not developing the parcel is not consistent with the City General Plan and significantly increases the relative cost of the project due to the net increase in land acquisition costs.

6 Preliminary Site Layout

To better understand how the project at any of these sites might be implemented, a set of preliminary layout and section drawings have been developed and are included in Appendix 2 of this TM. These drawings demonstrate how some additional criteria and conditions could be achieved. Those criteria and conditions include:

- Flood proofing As a wet weather facility, the equalization basin will be most useful to the City during and after large storm events when flooding may occur. Should the basin fill with flood water, the capacity that was intended for high flows in the sanitary sewer system would not be available. It is therefore necessary to protect the basin from flooding due to surface water. Three flood protection methods were considered for this site:
 - Floodwalls/Levees Building floodwalls around the equalization basin facilities is a feasible method that would provide flood protection. Doing so, however, would potentially hinder future use of the parcel or disconnect one portion of the parcel from another. Ramps would likely be used to provide access over the floodwalls, increasing their overall footprint. Floodwalls or levees would likely be harder to integrate into the future uses of the parcel.
 - Basin Sealing This method would involve utilizing waterproof seals at all basin openings as well as the odor control, generator, and control facilities. While possible to implement, this method would require additional maintenance compared to the other two flood protection methods and is not considered to be as reliable. When implementing flood protection measures at the Linda Mar Pump Station, the City elected to build walls and levees rather than rely on waterproof seals.

 Elevated Ground Surface – Elevating the basin facilities is a feasible method that would provide flood protection. Depending on the ultimate land use, ramps or a continuous slope across the parcel could provide connectivity between the elevated portion and the existing grade. Elevating the ground surface at the access points to the basin reduces the need for soil offhaul during excavation of the basin. This flood protection method is the basis of the site layouts presented in Attachment 2.

FEMA's Flood Insurance Rate Map (FIRM) (Map number 06081C0107E, effective date is October 16, 2012) identifies Site A as within Zone AH. Zone AH is FEMA's designation for "Areas with a 1% annual chance of shallow flooding, usually in the form of a pond, with an average depth ranging from 1 to 3 feet." (www.fema.gov). The FIRM indicates that the mapped water surface elevation is 14 feet. For comparison, the ground elevation at the basin locations varies between approximately 10 feet and 12.5 feet (elevation information taken from a subset of the USGS National Elevation Dataset, vertical datum NAVD88 with units converted from meters to feet). The submergence over these facilities during a 1% flow event could therefore be expected to be on the order of 1.5 to 4 feet. For purposes of this TM, it is assumed that the ground elevation for the entry points and sensitive equipment for the equalization basin facilities would be raised to 14.5 feet, negating the impacts of the flood waters during a 1% event. The perimeter of the elevated area could be graded to allow appropriate access for the elevated area.

- Vehicle access The drawing set in Appendix 2 shows how vehicle access from the street could be maintained as well as potential bus stop location within the parcel to maintain the bus station functionality.
- Operations and maintenance access After construction and start-up of the facility, access to the surface and sub-surface facilities will be critical to operation and maintenance of the equalization basin. The drawing set shows how vehicle and personnel access could be incorporated into the future project.
- Other uses The drawings included in Appendix 2 show a raised area to remove the entry points and sensitive equipment from the 1% flood event. These raised areas have a limited footprint and are oriented to allow for future uses of the Site A parcel. It is assumed that the non-raised equalization basin area could be used for parking depending on site layout. It would be possible to increase the load capacity of the basin roof at the design phase should the City wish to consider construction of structures or other heavier uses over the basin.

The odor control bed can be planted to act as a lightly vegetated buffer between the Site A parcel and Linda Mar Blvd.

7 Next Steps

This TM has identified two preferred locations within Site A for the wet weather equalization basin and demonstrated how multiple criteria can be satisfied through site layout. Due to the subterrainean nature of most of the equalization basin facilities, the existing uses of the Site A parcel could continue and many future uses of the parcel could be accommodated, especially with advance knowledge of loading design criteria and future site layout plans.

The information presented in this TM can be combined with the site assessments presented in the Wet Weather Site Feasibility Evaluation Report to make a more informed decision regarding the preferred equalization basin site. Based on the overall assessment of the sites and input from the public, the City

will make a selection of the preferred equalization basin site. Should one of the Site A locations presented in this TM be preferred, the drawings included in Appendix 2 can be used as a tool to further the discussion regarding layout options and potentially serve as a partial basis of design.

Appendix 1 - State Parcel 024609-01-01

Figure provided by Caltrans on 4/10/13

Appendix 2 – Preliminary Site Layouts and Sections

		WET WEATHER EQUALIZATION BASIN SITE FEASIBILITY EVAL.		DWG NO	Fig 2
		SITE A-1 EQUALIZATION BASIN		SHEET NO	OF
				PROJ NO	0297-001
		PLAN AND SECTIONS		DATE	MAY 2013

/- SHRUB (TYP)

0" I" I" VERIFY SCALES —		Δ					DESIGNED	SUBMITTED:	COLUMN T
BAR IS ONE INCH LONG ON FULL SIZE DRAWING	B AA/						DRAWN	RMC PROJ ENGR C	
IF NOT ONE INCH LONG ON THIS							CHECKED	RMC ENGR C	1025/
DRAWING, ADJUST SCALES ACCORDINGLY	water and Environment	REV	DATE	BY	APVD	DESCRIPTION			- Times

Т	WET WEATHER EQUALIZATION BASIN SITE FEASIBILITY EVAL.		DWG NO	Fig 6
	SITE A-3	1	SHEET NO	OF
	EQUALIZATION BASIN		PROJ NO	0297-001
	PLAN AND SECTIONS		DATE	MAY 2013

Attachment D - City Staff Schedule Estimates

PACIFICA WET WEATHER EQUALIZATION BASIN TIMELINE TO CONSTRUCTION COMPLETION SITE ALTERNATIVE 1A

			20)15	;					20	16					201	7					:	201	8				20	19	
	J A N		J U N				D E C	J A N		J U N			D. E/ CI	N V N		J U N			D E C	J A N			J U N			E C	N Ø 1			J U N
Final Location Approval Process (4/1/15 to 7/13/15)																														
Project/Construction Management Consultant Hiring Process (7/15/15 to 9/15/15)																														
Right-of-Way Acquisition Process (8/1/15 to 1/31/17)																														
Engineering Design Consultant Hiring Process (10/1/15 to12/1/15)																														
CEQA ² /Design Process (12/1/15 to 2/28/17)																														
Construction Process (3/1/17 to 6/30/18)																														

NOTES: 1. DATES ARE ONLY ESTIMATE ESPECIALLY FOR CEQA/DESIGN PROCESS AND CONSTRUCTION PROCESS

PACIFICA WET WEATHER EQUALIZATION BASIN TIMELINE TO CONSTRUCTION COMPLETION SITE ALTERNATIVES 2A AND 3A

			2	01	5						20	16					20)17	,					20 ⁻	18				2	01	9	
	J A N		J L N	1 1 1			 	D E C	J A N		J U N			D E C	J A N		J U N				D E C	J A N		J U N			D E C	J A N				J U N
Final Location Approval Process (4/1/15 to 7/13/15)																																
Project/Construction Management Consultant Hiring Process (7/15/15 to 9/15/15)																																
Right-of-Way Acquisition Process (8/1/15 to 1/31/17)																																
Engineering Design Consultant Hiring Process (10/1/15 to12/1/15)																																
CEQA ² /Design Process (12/1/15 to 2/28/17)																																
Permitting Process (5/1/16 to 8/31/17)																																
Construction Process (9/1/17 to 12/31/18)																																

NOTES: 1. DATES ARE ONLY ESTIMATE ESPECIALLY FOR CEQA/DESIGN PROCESS AND CONSTRUCTION PROCESS

PACIFICA WET WEATHER EQUALIZATION BASIN TIMELINE TO CONSTRUCTION COMPLETION SITE ALTERNATIVES 2B AND 3B

			201	5					20)16					2	201	7					20 ⁻	18				20)19	
	J A N		J U N			E C) A N		J U N			D E C	J A N			J U N			D E C	J A N		J U N			D E C	J A N			J U N
Final Location Approval Process (4/1/15 to 7/13/15)																													
Project/Construction Management Consultant Hiring Process (7/15/15 to 9/15/15)																													
Engineering Design Consultant Hiring Process (10/1/15 to12/1/15)																													
CEQA ² /Design Process (12/1/15 to 2/28/17)																													
Construction Process (3/1/17 to 6/30/18)																													

NOTES: 1. DATES ARE ONLY ESTIMATE ESPECIALLY FOR CEQA/DESIGN PROCESS AND CONSTRUCTION PROCESS

PACIFICA WET WEATHER EQUALIZATION BASIN TIMELINE TO CONSTRUCTION COMPLETION SITE ALTERNATIVE 4

			20	15					20 [,]	16					201	7					20)18	}				2	019	•	
	J A N		J U N			D E C	J A N		J U N			D E C	J A N		J U N			E C	J A N		J U N				D E C	J A N				J U N
Final Location Approval Process (4/1/15 to 7/13/15)																														
Project/Construction Management Consultant Hiring Process (7/15/15 to 9/15/15)																														
Engineering Design Consultant Hiring Process (10/1/15 to12/1/15)																														
CEQA ² /Design Process (12/1/15 to 2/28/17)																														
Permitting Process (5/1/16 to 2/28/18)																														
Construction Process (3/1/18 to 6/30/19)																														

NOTES: 1. DATES ARE ONLY ESTIMATE ESPECIALLY FOR CEQA/DESIGN PROCESS AND CONSTRUCTION PROCESS

Attachment E - Site 1A Environmental Boring Test Results

July 1, 2015

RMC Water and Environment Mr. Stephen Clary, Principal 2175 N. California Blvd., Suite 315 Walnut Creek, CA 94596

Environmental Site Assessment, Pacifica Sewer Basin Project, Site 1A

The following letter report summarizes the results of Bonkowski & Associates, Inc. (BAI) environmental assessment of shallow soils and groundwater at the CalTrans Park and Ride located at 507 Linda Mar Boulevard, in Pacifica, California. The purpose of the work was to explore shallow soils and groundwater in the vicinity of the City of Pacifica Sewer Basin Project Site 1A to identify petroleum fuel hydrocarbons. A Phase II Soil and Groundwater Investigation of the adjacent gas station located at 505 Linda Mar Boulevard identified low concentrations of fuel hydrocarbons and metals in the underlying shallow soil and groundwater (Stantec boring logs and laboratory test data, 2015).

To complete this task, two GeoProbe borings (GP-1 and GP-2) were advanced by Woodward Drilling at the locations shown on Figure 1. GP-1 was advanced along the west side of the property in close proximity to the gas station described above. GP-2 was advanced into the near center of the planned sewer basin. Both GP-1 and GP-2 were advanced to total depths of 20 feet. A BAI field geologist (1) collected soil samples from depths of 16 or 20 feet in each boring for chemical testing, (2) measured the volatile organic vapor content of the samples using a Mini-RAE 3000 PID, (3) collected a grab groundwater sample from a depth of 19 feet in GP-2 for chemical testing, and (4) and prepared a log for each boring using the Unified Soils Classification System.

The soils encountered consisted primarily of gravelly silt, clayey silt, clayey sand, clayey silty sand and fat clay. The top of the shallowmost groundwater was encountered at a depth of 19 feet in GP-2. Groundwater was not encountered in GP-1. The borings logs are presented in Appendix A. The organic vapor concentrations ranged from 0.2 to 0.5 ppm (PID units). The highest PID concentrations were noted in GP-2, at depths of 7 and 10 feet. The VOC PID measurements are tabulated on the logs. Both borings were backfilled in accordance with County well sealing standards.

The soil and groundwater samples collected from GP-1 and GP-2 were analyzed by McCampbell Analytical for TPHG and TPHD by EPA Method 8015; BTEX, MTBE, TBA, TAME, ETBE and DIPE by EPA Method 8260 and CAM 17 Metals by E200.8. The analytical results are summarized in Tables 1 thru 4. The McCampbell Analytical reports are included in Appendix B. The grab groundwater sample collected from GP-2 contained 210 µg/l of TPHD and 2.5 µg/l of TBA. No other hydrocarbon compounds were reported.

The field investigation was limited to exploration of shallow soils and groundwater for evidence of hydrocarbon contamination from the adjacent gasoline station. The possible presence or absence of any other type of contamination at the Site is not addressed in this work, nor is the extent of this contamination. The boring logs indicate the soil conditions encountered at the time and locations the borings were made, and may not represent conditions at other times and locations.

BONKOWSKI & ASSOCIATES, INC.

Cynthia A. Dittmar, PG 7213 EIT Project Manager

Michael S. Bonkowski, PG CEG 1329 L.HG Manager, Environmental and Engineering Services

ATTACHMENTS:

- Table 1 Groundwater Chemical Test Results (EPA 8015, 8021 and 8260)
- Table 2 Groundwater Chemical Test Results (CAM 17 Metals)
- Table 3 Soil Chemical Test Results (EPA 8015, 8021 and 8260)
- Table 4 Soil Chemical Test Results (CAM 17 Metals)
- Figure 1 Soil Boring Locations, 507 Linda Mar Boulevard, Pacifica, California
- Appendix A Logs of Borings GP-1 and GP-2. Explanation of Terms Used for Soil Description and Legend of Boring Log Symbols.
- Appendix B McCampbell Analytical Soil and Groundwater Analyses. Chain-of-Custody Forms.

TABLES

Table 1.Groundwater Chemical Test Results (EPA 8015, 8021 and 8260)Pacifica Sewer Basin Project, Site 1A, Pacifica, California

Sample No.	Sample Depth (feet)	TPHG (µg/I)	TPHD (µg/l)	Benzene (µg/I)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TBA (μg/l)	Date Sampled
GP-2 ¹	19	<50	210*†	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2.5	6/19/2015

¹ TPHD samples analyzed with a silica gel cleanup

* Diesel range compounds are significant; no recognizable pattern

+ Oil range compounds are significant

Table 2. Groundwater Chemical Test Results (CAM 17 Metals)

Pacifica Sewer Basin Project,	Site 1A, Pacifica, California
-------------------------------	-------------------------------

Sample No.	Sample Depth (feet)	Antimony (µg/I)	Arsenic (µg/I)	Barium (µg/l)	Beryllium (µg/l)	Cadmium (µg/l)	Chromium (µg/I)	Cobalt (µg/l)	Copper (µg/I)	Lead (µg/I)	Mercury (µg/I)	Molybdenum (µg/l)	Nickel (µg/I)	Selenium (µg/I)	Silver (µg/l)	Thallium (µg/l)	Vanadium (µg/l)	Zinc (µg/I)	Date Sampled
GP-2	19	< 5.0	20	3,400	9.6	<2.5	430	160	270	110	0.61	<5.0	620	<5.0	<1.9	<5.0	440	720	6/19/2015

Table 3.Soil Chemical Test Results (EPA 8015, 8021 and 8260)Pacifica Sewer Basin Project, Site 1A, Pacifica, California

Sample No.	Sample Depth (feet)	TPHG (mg/kg)	TPHD (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	TBA (mg/kg)	Date Sampled
GP-1	16	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	6/19/2015
GP-2	20	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	6/19/2015

Table 4. Soil Chemical Test Results (CAM 17 Metals)

Pacifica Sewer Basin Project, Site 1A, Pacifica, California

Sample No.	Sample Depth (feet)	Antimony (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Beryllium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Molybdenum (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Thallium (mg/kg)	Vanadium (mg/kg)	Zinc (mg/kg)	Date Sampled
GP-1	16	<0.50	2.2	160	<0.50	<0.25	58	8.0	17	6.2	<0.050	0.83	33	<0.50	<0.50	<0.50	39	43	6/19/2015
GP-2	20	0.53	5.3	260	0.95	<0.25	85	10	46	14	0.10	1.9	72	1.3	<0.50	<0.50	62	110	6/19/2015

FIGURES

Approximate Scale (feet): 0 50 100

0 50 100

LEGEND • GP-1 Soil Sample

Project No. E215383	Sewer Basin Project, Site 1A Pacifica, California	Figure
Bonkow	vski & Associates, Inc.	1

APPENDIX A BORING LOGS

Boi	nko	w	/sk	ki & Associates, In	С. Р	ROJECT NA	ME _	RMC -Pacifica	- FILE NO. —	21538	33
BORI	BORING LOCATION 507 Linda Mar Blvd., Pacifica							BORING NUMBER GP-	1		
DRILL	DRILLING AGENCY Woodward Drilling DRILLER David V. DATE STARTED DATE FINISHED 6/19/15										
DRILL	DRILLING EQUIPMENT Truck-mounted GeoProbe TOTAL DEPTH 20' SAMPLER							Contin Core	uous		
DRILL	ING N	/ET	нор	Direct Push	CORE DIAMETER	1.5"		NO. OF DIST. SAMPLES	undist. 5		
TYPE	E OF		NO.	1 Neat Cement	FROM 0	то 20	FT.	WATER FIRST NE	COMPL.	24 H	RS.
			NO.	2	FROM	то	FT.	LOGGED CA Dittmar	CHECKED BY:	MB	
Depth (feet)	Samples	ī	Blows	M	ATERIAL D	ESCRIPT	ON			nscs	Lithology
_				9" AC FILL - CLAYEY SILT, w/ grave	l, 10YR 3/2, ve	ery dark gray	browr	n, damp/dry, no odor	-	ML	
-	X			GRAVELLY SILT, GLEY 1-2.5/	10, green blac	k, damp, no (odor		0.4 ppm - -	ML	
5 -				FAT CLAY, GLEY 1-2.5/N, blac	k, moist/wet, r	no odor			0.4 ppm	CH	
-				CLAYEY SILT, GLEY 1-2.5/N, I	black, moist/w	et, no odor				ML	
-	\ge			AA, more silt, wet, no odor					0.4 ppm –	ML	
- 15 -									0.2 ppm _	-	
-				AA					- - 0.4 ppm	ML	
 20	X									-	
-									-	-	
25 – –										-	
-									-	-	
30 - -										-	
-									-		
35 -										-	

Bor	nk	ov	vsł	ki & Associates, Ir	ו כ. ₽	ROJE	CT NA	ME _	RMC	-Pacifica	FILE NO.	21538	33
BORING LOCATION 507 Linda Mar Blvd., Pacifica BORING NUMBER GP-2													
DRILL	.ING	AGI	ENCY	Woodward Drilling	DRILLER D	avid \	1.		DATE STA DATE FINI	RTED 6/19/15 SHED			
DRILLING EQUIPMENT Truck-mounted GeoProbe TOTAL DEPTH 20' SAMPLER									Contin Core	uous			
DRILL	ING	ME	ТНОГ	Direct Push	CORE DIAMETER	1.	5"		NO. OF SAMPLES	DIST.	undist. 5		
TYPE	OF		NO.	.1 Neat Cement	FROM 0	то	20	FT.	WATER LEVEL	FIRST 19 feet	COMPL.	24 H	RS.
			NO.	. 2	FROM	то		FT.	LOGGED BY:	CA Dittmar	CHECKED BY:	MB	
Depth (feet)	Samples		Blows	N	1ATERIAL D	ESC	RIPTI	ON				nscs	Lithology
_				8" AC FILL - CLAYEY SILT, w/ grav	el, 10YR 3/2, v	ery da	rk gray	browr	, moist, no	odor	-	- ML	
-	X			CLAYEY SILT, GLEY 1-2.5/10 AA, with gravel to 3/4", moist,), green black, i no odor	moist,	no odoi	ſ			0.4 ppm - -	- ML	
5 -			Ī	CLAYEY SILTY COARSE SA	ND, GLEY 1-2.	5/10, g	reen bl	ack, v	vet, no odor	ſ		SM	
-	\times			FAT CLAY with roots, GLEY 2	-2.5/5GB, gree	n blac	k, wet, i	no odo	or		0.5 ppm _	СН	
-				CLAYEY SAND, GLEY 2-2.5/	GB, green bla	ck, we	t, no od	or				SC	
10 –				FAT CLAY with roots, GLEY 2 CLAYEY SAND, GLEY 2-2.5/	-2.5/5GB, gree 5GB, green bla	n blac ck, we	k, wet, i et, no oc	<u>no odo</u> lor	or		0.5 ppm	- CH SC	
-	\times			FAT CLAY with grasses GLE	√ 2-2 5/5PR bl	ue bla	ck wet	no or	lor		- - 0.4 ppm	- сн	
15 – –	\times				1 2 2:0/01 2, 0						-	-	
- 20 -	X										0.2 ppm -	-	
-											-	-	
-											-		
25 –											_	-	
											-		
_											-	-	
-											-	-	
30 -											_		
											-		
_											-	-	
-											-		
35 -											_	1	
L													

SAMPLE CLASSIFICATION CHART							
	UNIFIED SOIL CLASSIFICATION						
MAJOR DIV	ISIONS	SYMBOLS	GRAPHIC COLUMN	TYPICAL NAMES			
o L	GRAVELS	GW		Well-graded gravels and gravel-sand mixtures, little or no fines			
) SOII oil > n (1/2 of coarse	GP		Poorly-graded gravels or gravel-sand mixtures, little or no fines			
	f f f f f f f f f f	GM		Silty gravels, gravel-sand-silt mixtures			
Z Q Z Q	4 Sieve Size)	GC		Clayey gravels, gravel-sand-clay mixtures			
E GR/ Ian 1/: 00 sie	SANDS	SW		Well-graded sands or gravelly sands, little or no fines			
ARSE ore th 20	1/2 of coarse fraction < no.	SP		Poorly-graded sands or gravelly sands, little or no fines			
ß₹		SM		Silty sands, sand-silt mixtures			
	4 Sieve Size)	SC		Clayey sands, sand-clay mixtures			
s ë	SILTS&	ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity			
ED SOIL of soil < size)	<u>CLAYS</u> LL < 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays			
RAINI n 1/2 () sieve		OL		Organic silts and organic silty clays of low plasticity			
NE GF re tha 200	SILTS&	МН		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts			
Mo		CH		Inorganic clays of high plasticity, fat clays			
Ū	LL > 50	ОН		Organic clays of medium to high plasticity, fat clays			
HIGHLY ORC	GANIC SOILS	Pt Pt		Peat and other highly organic soils			

CLASSIFICAT	ION MODIFIERS
TRACE	0 - 10 %
LITTLE	10 - 20 %
SOME	20 - 35 %
AND	35 - 50 %
± MOD	IFIERS

GRAIN SIZE CLASSIFICATION						
CLASSIFICATION	RANGE OF GR/	RANGE OF GRAIN SIZES				
	U.S. Standard Grain Size	Sieve Size in Millimeters				
BOULDERS	Above 12"	Above 305				
COBBLES	12" to 3"	305 to 76.2				
GRAVEL	3" to No. 4	76.2 to 4.76				
coarse (c)	3" to 3/4"	76.2 to 19.1				
fine (f)	3/4" to No. 4	19.1 to 4.76				
SAND	No. 4 to No. 200	4.76 to 0.074				
coarse (c)	No. 4 to No. 10	4.76 to 2.00				
medium (m)	No. 10 to No. 40	2.00 to 0.420				
fine (f)	No. 40 to No. 200	0.420 to 0.074				
SILT & CLAY	Below No. 200	Below 0.074				

SAMPLE CLASSIFICATION CHART

		Moisture Content
DRY	-	Little/ No Perceptible Moisture
DAMP	-	Some Perceptible Moisture, Not Compactible
MOIST	-	Compactible
WET	-	Above Compaction Range
SATURATED	-	Pores, Voids Filled With Water
	-	Water Table (at Time Of Drilling)

SORTING (S_{\circ} =	P ₇₅ /P ₂₅)
	S _o
EXTREMELY WELL	1.0 - 1.1
VERY WELL	1.1 - 1.2
WELL	1.2 - 1.4
MODERATELY	1.4 - 2.0
POORLY	2.0 - 2.7
VERY POORLY	2.7 - 5.0

SOIL CONSISTENCY					
SAND OR GRAVEL	BLOWS/FT	SILT OR CLAY	BLOWS/FT	THUMB PENETRATION	
Very Loose Loose Medium Dense Dense Very Dense	< 5 5 - 15 16 - 40 41 - 65 > 65	Very Soft Soft Medium (firm) Stiff Very Stiff Hard	< 3 3 - 5 6 - 10 11 - 20 21 - 40 >40	Very easily - inches Easily - inches Moderate Effort - inches Indented easily Indented by nail Difficult by nail	

	Laboratory Sample		Blank Casing
	Water Level Observed in Boring		Screened
\bigtriangledown	Static Water Level Measured in Well		Casing
Note:	Blow Count (Blows/Ft) Represent the Number of Blows of a 140 - Pound Hammer Falling 30 Inches per Blow		Cement Grout
	Required to Drive a Sampler Through The Last 12 Inches of an 18-inch Penetration.	8	Bentonite
Note:	The Line Separating Strata on the Logs Represents Approximate Boundaries Only. The Actual Transition may be Gradual. No Warranty is Provided as to the Continuity of Soil Strata Between Borings. Logs Represent the Soil Section Observed at the Boring Location on the Date of Drilling Only.		Sand Pack

APPENDIX B

CHEMICAL LABORATORY REPORTS

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1506873	Amended:	06/26/2015
Report Created for:	Bonkowski & Associates		
	6400 Hollis Street, Suite 4 Emeryville, CA 94608	1	
Project Contact: Project P.O.: Project Name:	Cynthia Dittmar E215382-01 #E215382; RMC Pacifica		
Project Received:	06/19/2015		

Analytical Report reviewed & approved for release on 06/26/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client:Bonkowski & AssociatesProject:#E215382; RMC Pacifica

WorkOrder: 1506873

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference
e2 diesel range compounds are significant; no recognizable pattern
e7 oil range compounds are significant

Quality Control Qualifiers

- F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.
- F2 LCS recovery for this compound is outside of acceptance limits.

Client:	Bonkowski & Associates
Project:	#E215382; RMC Pacifica
Date Received:	6/19/15 18:16
Date Prepared:	6/19/15

WorkOrder:	1506873
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Oxygenated Volatile Organics & BTEX by P&T and GC/MS

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
S-215383-GP1-20	1506873-001A	Soil	06/19/201	5	GC16	106566
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
tert-Amyl methyl ether (TAME)	ND		0.0050	1		06/25/2015 01:10
Benzene	ND		0.0050	1		06/25/2015 01:10
t-Butyl alcohol (TBA)	ND		0.050	1		06/25/2015 01:10
Diisopropyl ether (DIPE)	ND		0.0050	1		06/25/2015 01:10
Ethylbenzene	ND		0.0050	1		06/25/2015 01:10
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		06/25/2015 01:10
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		06/25/2015 01:10
Toluene	ND		0.0050	1		06/25/2015 01:10
Xylenes, Total	ND		0.0050	1		06/25/2015 01:10
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	98		70-130			06/25/2015 01:10
Toluene-d8	90		70-130			06/25/2015 01:10
Benzene-d6	81		60-140			06/25/2015 01:10
Ethylbenzene-d10	84		60-140			06/25/2015 01:10

Analyst(s): KF

Client ID	Lab ID	Matrix	Date Co	ollected	l Instrument	Batch ID
S-215383-GP2-16	1506873-002A	Soil	06/19/201	15	GC10	106605
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
tert-Amyl methyl ether (TAME)	ND		0.0050	1		06/22/2015 16:07
Benzene	ND		0.0050	1		06/22/2015 16:07
t-Butyl alcohol (TBA)	ND		0.050	1		06/22/2015 16:07
Diisopropyl ether (DIPE)	ND		0.0050	1		06/22/2015 16:07
Ethylbenzene	ND		0.0050	1		06/22/2015 16:07
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		06/22/2015 16:07
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		06/22/2015 16:07
Toluene	ND		0.0050	1		06/22/2015 16:07
Xylenes, Total	ND		0.0050	1		06/22/2015 16:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	81		70-130			06/22/2015 16:07
Toluene-d8	88		70-130			06/22/2015 16:07
Benzene-d6	82		60-140			06/22/2015 16:07
Ethylbenzene-d10	90		60-140			06/22/2015 16:07
Analyst(s): AK						

Client:	Bonkowski & Associates
Project:	#E215382; RMC Pacifica
Date Received:	6/19/15 18:16
Date Prepared:	6/23/15

WorkOrder:	1506873
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	μg/L

Oxygenated Volatile Organics & BTEX by P&T and GC/MS

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
W-215383-GP2-	1506873-003C	Water	06/19/20	15 12:15 GC28	106744
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
tert-Amyl methyl ether (TAME)	ND		0.50	1	06/23/2015 23:45
Benzene	ND		0.50	1	06/23/2015 23:45
t-Butyl alcohol (TBA)	2.5		2.0	1	06/23/2015 23:45
Diisopropyl ether (DIPE)	ND		0.50	1	06/23/2015 23:45
Ethylbenzene	ND		0.50	1	06/23/2015 23:45
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	06/23/2015 23:45
Methyl-t-butyl ether (MTBE)	ND		0.50	1	06/23/2015 23:45
Toluene	ND		0.50	1	06/23/2015 23:45
Xylenes, Total	ND		0.50	1	06/23/2015 23:45
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	105		70-130		06/23/2015 23:45
Toluene-d8	106		70-130		06/23/2015 23:45
<u>Analyst(s):</u> KBO					

Client:Bonkowski & AssociatesProject:#E215382; RMC PacificaDate Received:6/19/15 18:16Date Prepared:6/19/15

WorkOrder:	1506873
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
S-215383-GP1-20	1506873-001A	Soil	06/19/20	15	ICP-MS1	106604
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Antimony	ND		0.50	1		06/22/2015 20:35
Arsenic	2.2		0.50	1		06/22/2015 20:35
Barium	160		5.0	1		06/22/2015 20:35
Beryllium	ND		0.50	1		06/22/2015 20:35
Cadmium	ND		0.25	1		06/22/2015 20:35
Chromium	58		0.50	1		06/22/2015 20:35
Cobalt	8.0		0.50	1		06/22/2015 20:35
Copper	17		0.50	1		06/22/2015 20:35
Lead	6.2		0.50	1		06/22/2015 20:35
Mercury	ND		0.050	1		06/22/2015 20:35
Molybdenum	0.83		0.50	1		06/22/2015 20:35
Nickel	33		0.50	1		06/22/2015 20:35
Selenium	ND		0.50	1		06/22/2015 20:35
Silver	ND		0.50	1		06/22/2015 20:35
Thallium	ND		0.50	1		06/22/2015 20:35
Vanadium	39		0.50	1		06/22/2015 20:35
Zinc	43		5.0	1		06/22/2015 20:35
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	86		70-130			06/22/2015 20:35
Analyst(s): DB						

Client:Bonkowski & AssociatesProject:#E215382; RMC PacificaDate Received:6/19/15 18:16Date Prepared:6/19/15

WorkOrder:	1506873
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
S-215383-GP2-16	1506873-002A	Soil	06/19/20	15	ICP-MS1	106604
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Antimony	0.53		0.50	1		06/22/2015 22:02
Arsenic	5.3		0.50	1		06/22/2015 22:02
Barium	260		5.0	1		06/22/2015 22:02
Beryllium	0.95		0.50	1		06/22/2015 22:02
Cadmium	ND		0.25	1		06/22/2015 22:02
Chromium	85		0.50	1		06/22/2015 22:02
Cobalt	10		0.50	1		06/22/2015 22:02
Copper	46		0.50	1		06/22/2015 22:02
Lead	14		0.50	1		06/22/2015 22:02
Mercury	0.10		0.050	1		06/22/2015 22:02
Molybdenum	1.9		0.50	1		06/22/2015 22:02
Nickel	72		0.50	1		06/22/2015 22:02
Selenium	1.3		0.50	1		06/22/2015 22:02
Silver	ND		0.50	1		06/22/2015 22:02
Thallium	ND		0.50	1		06/22/2015 22:02
Vanadium	62		0.50	1		06/22/2015 22:02
Zinc	110		5.0	1		06/22/2015 22:02
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	120		70-130			06/22/2015 22:02
<u>Analyst(s):</u> DB						

Client:Bonkowski & AssociatesProject:#E215382; RMC PacificaDate Received:6/19/15 18:16Date Prepared:6/19/15

WorkOrder:	1506873
Extraction Method:	E200.8
Analytical Method:	E200.8
Unit:	μg/L

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instru	ment Batch ID
W-215383-GP2-	1506873-003B	Water	06/19/2015	12:15 ICP-MS	61 106569
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Antimony	ND		5.0	10	06/22/2015 16:42
Arsenic	20		5.0	10	06/22/2015 16:42
Barium	3400		50	10	06/22/2015 16:42
Beryllium	9.6		5.0	10	06/22/2015 16:42
Cadmium	ND		2.5	10	06/22/2015 16:42
Chromium	430		5.0	10	06/22/2015 16:42
Cobalt	160		5.0	10	06/22/2015 16:42
Copper	270		20	10	06/22/2015 16:42
Lead	110		5.0	10	06/22/2015 16:42
Mercury	0.61		0.25	10	06/22/2015 16:42
Molybdenum	ND		5.0	10	06/22/2015 16:42
Nickel	620		5.0	10	06/22/2015 16:42
Selenium	ND		5.0	10	06/22/2015 16:42
Silver	ND		1.9	10	06/22/2015 16:42
Thallium	ND		5.0	10	06/22/2015 16:42
Vanadium	440		5.0	10	06/22/2015 16:42
Zinc	720		150	10	06/22/2015 16:42
Surrogates	<u>REC (%)</u>		Limits		
Terbium	105		70-130		06/22/2015 16:42
<u>Analyst(s):</u> DVH		Anal	ytical Comme	<u>nts:</u> a1	

Client:	Bonkowski & Associates	WorkOrder:	1506873
Project:	#E215382; RMC Pacifica	Extraction Method:	SW5030B
Date Received:	6/19/15 18:16	Analytical Method:	SW8021B/8015Bm
Date Prepared:	6/19/15	Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
S-215383-GP1-20	1506873-001A	Soil	06/19/2015 GC19	106575
<u>Analytes</u>	Result		<u>RL DF</u>	Date Analyzed
TPH(g)	ND		1.0 1	06/24/2015 00:18
MTBE			0.050 1	06/24/2015 00:18
Benzene			0.0050 1	06/24/2015 00:18
Toluene			0.0050 1	06/24/2015 00:18
Ethylbenzene			0.0050 1	06/24/2015 00:18
Xylenes			0.0050 1	06/24/2015 00:18
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
2-Fluorotoluene	97		70-130	06/24/2015 00:18
<u>Analyst(s):</u> IA				
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
S-215383-GP2-16	1506873-002A	Soil	06/19/2015 GC19	106575
<u>Analytes</u>	Result		<u>RL</u> DF	Date Analyzed
TPH(g)	ND		1.0 1	06/24/2015 01:18
MTBE			0.050 1	06/24/2015 01:18
Benzene			0.0050 1	06/24/2015 01:18
Toluene			0.0050 1	06/24/2015 01:18
Ethylbenzene			0.0050 1	06/24/2015 01:18
Xylenes			0.0050 1	06/24/2015 01:18
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
2-Fluorotoluene	91		70-130	06/24/2015 01:18

Analyst(s): IA

Client:	Bonkowski & Associates	WorkOrder:	1506873
Project:	#E215382; RMC Pacifica	Extraction Method:	SW5030B
Date Received:	6/19/15 18:16	Analytical Method:	SW8021B/8015Bm
Date Prepared:	6/26/15	Unit:	µg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
W-215383-GP2-	1506873-003A	Water	06/19/20	15 12:15 GC19	106823
Analytes	<u>Result</u>		<u>RL</u>	DE	Date Analyzed
TPH(g)	ND		50	1	06/26/2015 13:45
МТВЕ			5.0	1	06/26/2015 13:45
Benzene			0.50	1	06/26/2015 13:45
Toluene			0.50	1	06/26/2015 13:45
Ethylbenzene			0.50	1	06/26/2015 13:45
Xylenes			0.50	1	06/26/2015 13:45
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	87		70-130		06/26/2015 13:45
Analyst(s): IA					

Analytical Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Project:	#E215382; RMC Pacifica	Extraction Method:	SW3550B
Date Received:	6/19/15 18:16	Analytical Method:	SW8015B
Date Prepared:	6/19/15	Unit:	mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
S-215383-GP1-20	1506873-001A	Soil	06/19/20	15	GC6A	106581
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		06/21/2015 16:14
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	103		70-130			06/21/2015 16:14
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
Client ID S-215383-GP2-16	Lab ID 1506873-002A	Matrix/ExtType Soil	Date C	ollected 15	Instrument GC6A	Batch ID 106581
Client ID S-215383-GP2-16 Analytes	Lab ID 1506873-002A <u>Result</u>	Matrix/ExtType Soil	Date C 06/19/20 <u>RL</u>	ollected 15 DF	Instrument GC6A	Batch ID 106581 Date Analyzed
Client ID S-215383-GP2-16 Analytes TPH-Diesel (C10-C23)	Lab ID 1506873-002A <u>Result</u> ND	Matrix/ExtType Soil	Date C 06/19/20 <u>RL</u> 1.0	ollected 15 DF 1	Instrument GC6A	Batch ID 106581 Date Analyzed 06/21/2015 13:51
Client ID S-215383-GP2-16 Analytes TPH-Diesel (C10-C23) Surrogates	Lab ID 1506873-002A Result ND REC (%)	Matrix/ExtType Soil	Date C 06/19/20 RL 1.0 Limits	DIlected 15 DF 1	Instrument GC6A	Batch ID 106581 Date Analyzed 06/21/2015 13:51
Client ID S-215383-GP2-16 <u>Analytes</u> TPH-Diesel (C10-C23) <u>Surrogates</u> C9	Lab ID 1506873-002A Result ND REC (%) 102	Matrix/ExtType Soil	Date C 06/19/20 RL 1.0 Limits 70-130	ollected 15 DF 1	Instrument GC6A	Batch ID 106581 Date Analyzed 06/21/2015 13:51

Analytical Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Project:	#E215382; RMC Pacifica	Extraction Method:	SW3510C
Date Received:	6/19/15 18:16	Analytical Method:	SW8015B
Date Prepared:	6/19/15	Unit:	μg/L

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
W-215383-GP2-	1506873-003A	Water	06/19/2015 12:15 GC6B	106598
Analytes	<u>Result</u>		<u>RL DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	260		50 1	06/20/2015 15:16
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	
C9	92		70-130	06/20/2015 15:16
<u>Analyst(s):</u> TK		Analy	tical Comments: e7,e2	

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/19/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106566 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106566 1506831-004AMS/MSD

QC Summary Report for SW8260B MB LCS SPK MB SS LCS LCS Analyte RL Result Result Val %REC %REC Limits ND 0.10 Acetone _ _ _ tert-Amyl methyl ether (TAME) ND 0.0585 0.0050 0.050 117. F2 53-116 _ 0.0561 0.050 Benzene ND 0.0050 _ 112 63-137 Bromobenzene ND 0.0050 _ Bromochloromethane ND _ 0.0050 _ -_ Bromodichloromethane ND 0.0050 -----Bromoform ND 0.0050 -----Bromomethane ND 0.0050 -_ -_ -2-Butanone (MEK) ND 0.020 t-Butyl alcohol (TBA) ND 0.259 0.050 41-135 0.20 130 n-Butyl benzene ND 0.0050 --0.0050 sec-Butyl benzene ND ---tert-Butyl benzene ND 0.0050 --_ _ Carbon Disulfide ND 0.0050 -----Carbon Tetrachloride ND 0.0050 _ -_ -_ Chlorobenzene ND 0.0050 -_ _ _ Chloroethane ND 0.0050 -----Chloroform ND 0.0050 -----Chloromethane ND -0.0050 _ ---2-Chlorotoluene ND 0.0050 4-Chlorotoluene ND 0.0050 _ ----ND Dibromochloromethane 0.0050 _ _ _ _ 1,2-Dibromo-3-chloropropane ND 0.0040 ---1,2-Dibromoethane (EDB) ND 0.0040 -_ Dibromomethane ND -0.0050 ----1,2-Dichlorobenzene ND 0.0050 _ _ -_ _ 1,3-Dichlorobenzene ND 0.0050 -_ -_ 1,4-Dichlorobenzene ND 0.0050 -----Dichlorodifluoromethane ND 0.0050 -----1,1-Dichloroethane ND 0.0050 -----ND 0.0040 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1,1-Dichloroethene -----ND cis-1,2-Dichloroethene 0.0050 _ _ _ _ _ trans-1,2-Dichloroethene ND 0.0050 ----1,2-Dichloropropane ND 0.0050 ---1,3-Dichloropropane ND 0.0050 -----2,2-Dichloropropane ND 0.0050 -_ _ _ _ 1,1-Dichloropropene ND . 0.0050 _ ---ND cis-1,3-Dichloropropene 0.0050 -----

trans-1,3-Dichloropropene

ND

-

0.0050

_

_

-

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/19/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106566 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106566 1506831-004AMS/MSD MSD

0.1

96

-

QC Summary Report for SW8260B MB LCS RL SPK MB SS LCS LCS Analyte Result Result Val %REC %REC Limits Diisopropyl ether (DIPE) ND 0.0528 0.0050 0.050 105 52-129 _ Ethylbenzene ND 0.0050 Ethyl tert-butyl ether (ETBE) ND 0.0563 0.050 53-125 0.0050 -113 Freon 113 ND 0.0050 _ _ Hexachlorobutadiene ND _ 0.0050 _ -_ Hexachloroethane ND 0.0050 -----2-Hexanone ND 0.0050 -----Isopropylbenzene ND 0.0050 -_ -_ -4-Isopropyl toluene ND 0.0050 58-122 Methyl-t-butyl ether (MTBE) ND 0.0579 0.050 0.0050 -116 Methylene chloride ND 0.0050 -_ -4-Methyl-2-pentanone (MIBK) ND 0.0050 ----Naphthalene ND 0.0050 _ -_ _ n-Propyl benzene ND 0.0050 -----ND Styrene -0.0050 _ -_ _ 1,1,1,2-Tetrachloroethane ND 0.0050 -_ _ _ 1,1,2,2-Tetrachloroethane ND 0.0050 -----Tetrachloroethene ND 0.0050 -Toluene 104 ND 0.050 0.0519 0.0050 -76-130 1,2,3-Trichlorobenzene ND 0.0050 1,2,4-Trichlorobenzene ND 0.0050 _ ----ND 1,1,1-Trichloroethane 0.0050 _ _ _ _ ND 1,1,2-Trichloroethane 0.0050 ---Trichloroethene ND 0.0050 -_ Trichlorofluoromethane ND -0.0050 ----1,2,3-Trichloropropane ND 0.0050 _ _ _ -_ 1,2,4-Trimethylbenzene ND 0.0050 -_ -_ ND 1,3,5-Trimethylbenzene 0.0050 -----Vinyl Chloride ND 0.0050 -----Xylenes, Total ND 0.0050 -----Surrogate Recovery Dibromofluoromethane 0.128 0.130 0.12 102 104 70-130 Toluene-d8 0.122 0.118 0.12 98 94 70-130 4-BFB 0.0107 0.0125 86 _ Benzene-d6 0.103 0.108 0.10 103 108 60-140 0.104 0.10 104 60-140 Ethylbenzene-d10 0.112 112

0.0965

1,2-DCB-d4

QA/QC Officer Page 13 of 32

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/19/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica
110jeett	HE210502, Hille I defiled

WorkOrder: 1506873 BatchID: 106566 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106566 1506831-004AMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0454	0.0451	0.050	ND	91	90	70-130	0.705	20
Benzene	0.0459	0.0436	0.050	ND	92	87	70-130	5.11	20
t-Butyl alcohol (TBA)	0.182	0.186	0.20	ND	91	93	70-130	1.95	20
Diisopropyl ether (DIPE)	0.0415	0.0418	0.050	ND	83	84	70-130	0.732	20
Ethyl tert-butyl ether (ETBE)	0.0447	0.0450	0.050	ND	89	90	70-130	0.501	20
Methyl-t-butyl ether (MTBE)	0.0448	0.0445	0.050	ND	90	89	70-130	0.640	20
Toluene	0.0427	0.0412	0.050	ND	85	82	70-130	3.59	20
Surrogate Recovery									
Dibromofluoromethane	0.126	0.128	0.12		101	102	70-130	1.18	20
Toluene-d8	0.114	0.115	0.12		91	92	70-130	1.30	20
Benzene-d6	0.0903	0.0862	0.10		90	86	60-140	4.58	20
Ethylbenzene-d10	0.0927	0.0902	0.10		93	90	60-140	2.73	20

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/20/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106605 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106605 1506873-002AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0470	0.0050	0.050	-	94	53-116
Benzene	ND	0.0453	0.0050	0.050	-	91	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.210	0.050	0.20	-	105	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	-	0.0050	-	-	-	-
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	-	0.0040	-	-	-	-
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	-	0.0040	-	-	-	-
1,1-Dichloroethene	ND	-	0.0050	-	-	-	-
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-

QA/QC Officer Page 15 of 32

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/20/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106605 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106605 1506873-002AMS/MSD

0.10

0.1

104

102

105

-

QC Summary Report for SW8260B MB LCS RL SPK MB SS LCS LCS Analyte Result Result Val %REC %REC Limits Diisopropyl ether (DIPE) ND 0.0425 0.0050 0.050 85 52-129 _ Ethylbenzene ND 0.0050 Ethyl tert-butyl ether (ETBE) ND 0.0456 0.050 53-125 0.0050 -91 Freon 113 ND 0.0050 _ _ Hexachlorobutadiene ND _ 0.0050 _ -_ Hexachloroethane ND 0.0050 -----2-Hexanone ND 0.0050 -----Isopropylbenzene ND 0.0050 -_ -_ -4-Isopropyl toluene ND 0.0050 0.0469 58-122 Methyl-t-butyl ether (MTBE) ND 0.050 0.0050 -94 Methylene chloride ND 0.0050 -_ -4-Methyl-2-pentanone (MIBK) ND 0.0050 ----Naphthalene ND 0.0050 _ -_ _ n-Propyl benzene ND 0.0050 -. ---ND Styrene -0.0050 _ -_ _ 1,1,1,2-Tetrachloroethane ND 0.0050 -_ _ _ 1,1,2,2-Tetrachloroethane ND 0.0050 -----Tetrachloroethene ND 0.0050 -_ Toluene ND 0.050 0.0424 0.0050 -85 76-130 1,2,3-Trichlorobenzene ND 0.0050 1,2,4-Trichlorobenzene ND 0.0050 _ ----ND 1,1,1-Trichloroethane 0.0050 _ _ _ _ ND 1,1,2-Trichloroethane 0.0050 ----Trichloroethene ND 0.0050 -_ Trichlorofluoromethane ND -0.0050 ----1,2,3-Trichloropropane ND 0.0050 _ _ _ -_ 1,2,4-Trimethylbenzene ND 0.0050 -_ -_ ND 1,3,5-Trimethylbenzene 0.0050 -----Vinyl Chloride ND 0.0050 -----Xylenes, Total ND 0.0050 -----Surrogate Recovery Dibromofluoromethane 0.124 0.126 0.12 99 101 70-130 0.117 Toluene-d8 0.113 0.12 94 90 70-130 4-BFB 0.0116 0.0125 93 _ 0.0959 Benzene-d6 0.0904 0.10 96 90 60-140

0.104

0.102

0.105

Ethylbenzene-d10

1,2-DCB-d4

60-140

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/20/15
Instrument:	GC16
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106605 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-106605 1506873-002AMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0325	0.0317	0.050	ND	65,F1	63,F1	70-130	2.36	20
Benzene	0.0371	0.0362	0.050	ND	74	72	70-130	2.38	20
t-Butyl alcohol (TBA)	0.132	0.121	0.20	ND	66,F1	60,F1	70-130	8.78	20
Diisopropyl ether (DIPE)	0.0367	0.0359	0.050	ND	73	72	70-130	2.20	20
Ethyl tert-butyl ether (ETBE)	0.0353	0.0345	0.050	ND	71	69,F1	70-130	2.35	20
Methyl-t-butyl ether (MTBE)	0.0340	0.0330	0.050	ND	68,F1	66,F1	70-130	3.01	20
Toluene	0.0378	0.0374	0.050	ND	76	75	70-130	1.31	20
Surrogate Recovery									
Dibromofluoromethane	0.104	0.105	0.12		83	84	70-130	0.629	20
Toluene-d8	0.110	0.110	0.12		88	88	70-130	0	20
Benzene-d6	0.0832	0.0816	0.10		83	82	60-140	2.03	20
Ethylbenzene-d10	0.0957	0.0919	0.10		96	92	60-140	3.98	20

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/23/15	BatchID:	106744
Date Analyzed:	6/23/15	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106744 1506844-004BMS/MSD

QC Summary Report for SW8260B								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Acetone	ND	-	10	-	-	-	-	
tert-Amyl methyl ether (TAME)	ND	9.19	0.50	10	-	92	54-140	
Benzene	ND	9.88	0.50	10	-	99	47-158	
Bromobenzene	ND	-	0.50	-	-	-	-	
Bromochloromethane	ND	-	0.50	-	-	-	-	
Bromodichloromethane	ND	-	0.50	-	-	-	-	
Bromoform	ND	-	0.50	-	-	-	-	
Bromomethane	ND	-	0.50	-	-	-	-	
2-Butanone (MEK)	ND	-	2.0	-	-	-	-	
t-Butyl alcohol (TBA)	ND	29.8	2.0	40	-	74	42-140	
n-Butyl benzene	ND	-	0.50	-	-	-	-	
sec-Butyl benzene	ND	-	0.50	-	-	-	-	
tert-Butyl benzene	ND	-	0.50	-	-	-	-	
Carbon Disulfide	ND	-	0.50	-	-	-	-	
Carbon Tetrachloride	ND	-	0.50	-	-	-	-	
Chlorobenzene	ND	-	0.50	-	-	-	-	
Chloroethane	ND	-	0.50	-	-	-	-	
Chloroform	ND	-	0.50	-	-	-	-	
Chloromethane	ND	-	0.50	-	-	-	-	
2-Chlorotoluene	ND	-	0.50	-	-	-	-	
4-Chlorotoluene	ND	-	0.50	-	-	-	-	
Dibromochloromethane	ND	-	0.50	-	-	-	-	
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-	
1,2-Dibromoethane (EDB)	ND	-	0.50	-	-	-	-	
Dibromomethane	ND	-	0.50	-	-	-	-	
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-	
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-	
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-	
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-	
1,1-Dichloroethane	ND	-	0.50	-	-	-	-	
1,2-Dichloroethane (1,2-DCA)	ND	-	0.50	-	-	-	-	
1,1-Dichloroethene	ND	-	0.50	-	-	-	-	
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-	
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-	
1,2-Dichloropropane	ND	-	0.50	-	-	-	-	
1,3-Dichloropropane	ND	-	0.50	-	-	-	-	
2,2-Dichloropropane	ND	-	0.50	-	-	-	-	
1,1-Dichloropropene	ND	-	0.50	-	-	-	-	
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-	
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-	

QA/QC Officer Page 18 of 32

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/23/15	BatchID:	106744
Date Analyzed:	6/23/15	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106744 1506844-004BMS/MSD

QC Summary Report for SW8260B MB LCS RL SPK MB SS LCS LCS Analyte Result Result Val %REC %REC Limits Diisopropyl ether (DIPE) ND 9.86 0.50 10 99 57-136 -Ethylbenzene ND 0.50 -Ethyl tert-butyl ether (ETBE) ND 8.95 0.50 55-137 10 -90 ND Freon 113 0.50 _ _ _ Hexachlorobutadiene ND -0.50 _ _ _ Hexachloroethane ND 0.50 -----2-Hexanone ND 0.50 _ _ ---Isopropylbenzene ND 0.50 -_ -_ -4-Isopropyl toluene ND 0.50 Methyl-t-butyl ether (MTBE) ND 8.75 0.50 53-139 10 -87 Methylene chloride ND 0.50 _ --4-Methyl-2-pentanone (MIBK) ND 0.50 ----Naphthalene ND 0.50 _ _ --_ n-Propyl benzene ND . 0.50 ----ND 0.50 Styrene -_ --_ 1,1,1,2-Tetrachloroethane ND 0.50 -_ _ _ _ ND 1,1,2,2-Tetrachloroethane 0.50 -----Tetrachloroethene ND 0.50 -_ _ Toluene ND 0.50 9.88 10 -99 52-137 1,2,3-Trichlorobenzene ND 0.50 1,2,4-Trichlorobenzene ND 0.50 -----ND 1,1,1-Trichloroethane 0.50 _ _ _ _ -1,1,2-Trichloroethane ND 0.50 ----Trichloroethene ND 0.50 ---_ Trichlorofluoromethane ND -0.50 ----1,2,3-Trichloropropane ND . 0.50 _ . _ -1,2,4-Trimethylbenzene ND 0.50 -_ -_ ND 0.50 1,3,5-Trimethylbenzene -----Vinyl Chloride ND 0.50 -----ND Xylenes, Total 0.50 -----Surrogate Recovery Dibromofluoromethane 25.9 26.0 25 104 104 70-130 Toluene-d8 27.4 27.5 25 110 110 70-130 4-BFB 2.56 -2.5 102 _ _

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/23/15	BatchID:	106744
Date Analyzed:	6/23/15	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106744 1506844-004BMS/MSD

QC Summary Report for SW8260B										
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit	
tert-Amyl methyl ether (TAME)	10.2	10.1	10	ND	102	101	69-139	1.39	20	
Benzene	10.1	9.77	10	ND	101	98	69-141	3.28	20	
t-Butyl alcohol (TBA)	38.9	39.2	40	ND	97	98	41-152	0.633	20	
Diisopropyl ether (DIPE)	10.2	10.1	10	ND	102	101	72-140	1.69	20	
Ethyl tert-butyl ether (ETBE)	9.66	9.46	10	ND	97	95	71-140	2.08	20	
Methyl-t-butyl ether (MTBE)	10.0	9.92	10	ND	100	99	73-139	1.19	20	
Toluene	9.60	9.27	10	ND	96	93	71-128	3.44	20	
Surrogate Recovery										
Dibromofluoromethane	26.3	26.4	25		105	106	70-130	0.578	20	
Toluene-d8	27.0	26.6	25		108	107	70-130	1.57	20	

Quality Control Report

Bonkowski & Associates
6/19/15
6/22/15
ICP-MS1
Soil
#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106604 Extraction Method: SW3050B Analytical Method: SW6020 Unit: mg/Kg Sample ID: MB/LCS-106604 1506873-001AMS/MSD

QC Summary Report for Metals							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	53.9	0.50	50	-	108	75-125
Arsenic	ND	51.4	0.50	50	-	103	75-125
Barium	ND	524	5.0	500	-	105	75-125
Beryllium	ND	54.0	0.50	50	-	108	75-125
Cadmium	ND	52.6	0.25	50	-	105	75-125
Chromium	ND	52.0	0.50	50	-	104	75-125
Cobalt	ND	51.8	0.50	50	-	103	75-125
Copper	ND	53.5	0.50	50	-	107	75-125
Lead	ND	53.5	0.50	50	-	107	75-125
Mercury	ND	1.18	0.050	1.25	-	95	75-125
Molybdenum	ND	51.6	0.50	50	-	103	75-125
Nickel	ND	53.0	0.50	50	-	106	75-125
Selenium	ND	53.7	0.50	50	-	107	75-125
Silver	ND	52.6	0.50	50	-	105	75-125
Thallium	ND	48.4	0.50	50	-	97	75-125
Vanadium	ND	52.2	0.50	50	-	104	75-125
Zinc	ND	543	5.0	500	-	109	75-125
Surrogate Recovery							
Terbium	515	542		500	103	108	70-130

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/22/15
Instrument:	ICP-MS1
Matrix:	Soil
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106604 Extraction Method: SW3050B Analytical Method: SW6020 Unit: mg/Kg Sample ID: MB/LCS-106604 1506873-001AMS/MSD

QC Summary Report for Metals									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	46.5	43.2	50	ND	93	86	75-125	7.40	20
Arsenic	47.5	42.7	50	2.159	91	81	75-125	10.5	20
Barium	728	630	500	158.3	114	94	75-125	14.5	20
Beryllium	40.7	39.5	50	ND	80	78	75-125	2.97	20
Cadmium	47.0	43.9	50	ND	94	87	75-125	6.83	20
Chromium	120	100	50	58.31	123	84	75-125	17.6	20
Cobalt	50.1	46.1	50	7.971	84	76	75-125	8.48	20
Copper	71.1	60.1	50	17.07	108	86	75-125	16.8	20
Lead	56.7	51.2	50	6.225	101	90	75-125	10.2	20
Mercury	1.16	1.09	1.25	ND	90	84	75-125	6.50	20
Molybdenum	46.5	42.7	50	0.8290	91	84	75-125	8.55	20
Nickel	92.8	77.0	50	33.35	119	87	75-125	18.7	20
Selenium	49.2	44.2	50	ND	98	88	75-125	10.7	20
Silver	47.4	44.0	50	ND	95	88	75-125	7.24	20
Thallium	44.0	41.2	50	ND	88	82	75-125	6.59	20
Vanadium	100	83.0	50	38.56	124	89	75-125	18.9	20
Zinc	545	483	500	42.81	100	88	75-125	12.0	20
Surrogate Recovery									
Terbium	464	428	500		93	86	70-130	8.11	20

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:
Date Prepared:	6/19/15	BatchID:
Date Analyzed:	6/22/15	Extraction Met
Instrument:	ICP-MS2	Analytical Met
Matrix:	Water	Unit:
Project:	#E215382; RMC Pacifica	Sample ID:

 BatchID:
 106569

 Extraction Method:
 E200.8

 Analytical Method:
 E200.8

 Unit:
 µg/L

 Sample ID:
 MB/LCS-106569 1506846-001GMS/MSD

1506873

QC Summary Report for Metals							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	50.7	0.50	50	-	101	85-115
Arsenic	ND	50.0	0.50	50	-	100	85-115
Barium	ND	520	5.0	500	-	104	85-115
Beryllium	ND	51.0	0.50	50	-	102	85-115
Cadmium	ND	50.5	0.25	50	-	101	85-115
Chromium	ND	50.4	0.50	50	-	101	85-115
Cobalt	ND	50.9	0.50	50	-	102	85-115
Copper	ND	51.6	2.0	50	-	103	85-115
Lead	ND	50.7	0.50	50	-	101	85-115
Mercury	ND	1.28	0.025	1.25	-	103	85-115
Molybdenum	ND	49.8	0.50	50	-	99	85-115
Nickel	ND	51.1	0.50	50	-	102	85-115
Selenium	ND	51.4	0.50	50	-	103	85-115
Silver	ND	50.2	0.19	50	-	100	85-115
Thallium	ND	47.0	0.50	50	-	94	85-115
Vanadium	ND	50.4	0.50	50	-	101	85-115
Zinc	ND	516	15	500	-	103	85-115
Surrogate Recovery							
Terbium	776	781		750	104	104	70-130

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/19/15
Date Analyzed:	6/22/15
Instrument:	ICP-MS2
Matrix:	Water
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106569 Extraction Method: E200.8 Analytical Method: E200.8 Unit: µg/L Sample ID: MB/LCS-106569 1506846-001GMS/MSD

	QC Su	nmary R	eport fo	or Metals					
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	48.7	50.4	50	ND<5.0	97	101	70-130	3.43	20
Arsenic	49.4	52.4	50	ND<5.0	99	105	70-130	5.89	20
Barium	557	569	500	72.28	97	99	70-130	2.11	20
Beryllium	48.8	50.8	50	ND<5.0	98	102	70-130	3.89	20
Cadmium	49.0	50.9	50	ND<2.5	98	102	70-130	3.82	20
Chromium	46.6	48.8	50	ND<5.0	93	98	70-130	4.57	20
Cobalt	49.2	50.6	50	ND<5.0	95	98	70-130	2.83	20
Copper	60.3	62.6	50	ND<20	87	92	70-130	3.73	20
Lead	50.0	51.4	50	ND<5.0	100	103	70-130	2.76	20
Mercury	1.18	1.29	1.25	ND<0.25	78	86	70-130	8.25	20
Molybdenum	49.5	50.7	50	ND<5.0	94	96	70-130	2.40	20
Nickel	54.4	56.1	50	7.691	93	97	70-130	3.17	20
Selenium	47.2	52.9	50	ND<5.0	94	106	70-130	11.5	20
Silver	49.0	50.4	50	ND<1.9	98	101	70-130	2.72	20
Thallium	45.5	47.1	50	ND<5.0	91	94	70-130	3.43	20
Vanadium	47.0	49.8	50	ND<5.0	94	100	70-130	5.86	20
Zinc	450	474	500	ND<150	90	95	70-130	5.20	20
Surrogate Recovery									
Terbium	794	811	750		106	108	70-130	2.13	20

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/19/15	BatchID:	106575
Date Analyzed:	6/22/15	Extraction Method:	SW5030B
Instrument:	GC19	Analytical Method:	SW8021B/8015Bm
Matrix:	Soil	Unit:	mg/Kg
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106575 1506845-041AMS/MSD

	QC Summary	y Report f	for SW	8021B/801	5Bm					
Analyte	MB Result	LCS Result		RL	SPK Val	MI %I	B SS REC	LCS %RE(C	LCS Limits
TPH(btex)	ND	0.529		0.40	0.60	-		88		70-130
МТВЕ	ND	0.0842		0.050	0.10	-		84		70-130
Benzene	ND	0.107		0.0050	0.10	-		107		70-130
Toluene	ND	0.109		0.0050	0.10	-		109		70-130
Ethylbenzene	ND	0.112		0.0050	0.10	-		112		70-130
Xylenes	ND	0.359		0.0050	0.30	-		120		70-130
Surrogate Recovery										
2-Fluorotoluene	0.126	0.115			0.10	12	7	115		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/I Limi	MSD ts	RPD	RPD Limit
TPH(btex)	NR	NR		15	NR	NR	-		NR	
МТВЕ	NR	NR		ND<0.25	NR	NR	-		NR	
Benzene	NR	NR		0.073	NR	NR	-		NR	
Toluene	NR	NR		0.72	NR	NR	-		NR	
Ethylbenzene	NR	NR		0.25	NR	NR	-		NR	
Xylenes	NR	NR		0.69	NR	NR	-		NR	
Surrogate Recovery										
2-Fluorotoluene	NR	NR			NR	NR	-		NR	

Quality Control Report

Client:	Bonkowski & Associates
Date Prepared:	6/25/15
Date Analyzed:	6/25/15
Instrument:	GC19
Matrix:	Water
Project:	#E215382; RMC Pacifica

WorkOrder: 1506873 BatchID: 106823 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: μg/L Sample ID: MB/LCS-106823

	QC Summary	Report for S	W8021B/801	5Bm			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	54.8	40	60	-	91	70-130
МТВЕ	ND	11.1	5.0	10	-	111	70-130
Benzene	ND	11.0	0.50	10	-	110	70-130
Toluene	ND	11.2	0.50	10	-	111	70-130
Ethylbenzene	ND	11.6	0.50	10	-	116	70-130
Xylenes	ND	37.3	0.50	30	-	124	70-130
Surrogate Recovery							
aaa-TFT	8.91	8.97		10	89	90	70-130

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/19/15	BatchID:	106581
Date Analyzed:	6/19/15	Extraction Method:	SW3550B
Instrument:	GC11A, GC6A	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106581 1506849-010AMS/MSD

	QC Report fo	r SW801	5B w/ou	ut SG Cle	an-Up					
Analyte	MB Result	LCS sult Result		RL	SPK Val	M I %	B SS REC	S LCS %REC		LCS Limits
TPH-Diesel (C10-C23)	ND	46.6		1.0	40	-		117		70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-		-		-
Surrogate Recovery										
C9	26.3	27.2			25	10	95	109		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit	/ISD ts	RPD	RPD Limit
TPH-Diesel (C10-C23)	38.3	41.5	40	ND	96	104	70-13	30	8.05	30
Surrogate Recovery										
C9	26.2	26.2	25		105	105	70-13	30	0	30

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/19/15	BatchID:	106598
Date Analyzed:	6/19/15 - 6/23/15	Extraction Method:	SW3510C
Instrument:	GC2A, GC2B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106598

QC F	QC Report for SW8015B w/out SG Clean-Up													
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits							
TPH-Diesel (C10-C23)	ND	1060	50	1000	-	106	61-157							
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-							
Surrogate Recovery														
С9	564	602		625	90	96	70-134							

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				Worl	kOrder:	1506873	3	Clier	ntCode:	BONK				
		WriteOn	EDF	Exce		EQuIS		Email	H	ardCopy	ThirdPa	rty	_J-fl	ag
Report to:					Bill to:					Requ	ested TAT:		5	days
Cynthia Dittmar Bonkowski & Associates 6400 Hollis Street, Suite 4 Emeryville, CA 94608 (510) 450-0770 FAX: (925) 284-3552	Email: cindy@ cc/3rd Party: PO: E21538 ProjectNo: #E2153	2bonkowski. 32-01 382; RMC P	com acifica		Accou Bonko 6400 I Emery accou	nts Paya wski & A Hollis Stu wille, CA nting@b	able Associa reet, Su A 94608 bonkows	tes uite 4 s ski.com		Date Date	e Received: Printed:		06/19/2 06/26/2	2015 2015
							Rec	quested T	ests (Se	e legend b	pelow)			
Lab ID Client ID	N	latrix C	Collection Date	Hold 1	2	3	4	5	6	7 8	9	10	11	12

1506873-001	S-215383-GP1-20	Soil	6/19/2015	А		A	А		А			
1506873-002	S-215383-GP2-16	Soil	6/19/2015	А		A	А		А			
1506873-003	W-215383-GP2-	Water	6/19/2015 12:15		С	В	-	А		Α		

Test Legend:

1	8260B_50XYBTEX_S	1	2 8260B_5OXYBTEX_W	3	CAM17MS_S	4 CA	M17MS_W	5 G-MBTEX_S
6	G-MBTEX_W		7 TPH(D)_S	8	TPH(D)_W	9		10
11		1	2					

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Erika Santos

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name: BONKOWSKI & ASSOCIATES Project: #E215382; RMC Pacifica

Comments:

QC Level: LEVEL 2 Client Contact: Cynthia Dittmar Contact's Email: cindy@bonkowski.com **Work Order:** 1506873 **Date Received:** 6/19/2015

		WaterTrax	WriteOn EDF	Excel]Fax 🖌 Email	HardC	opy ThirdPart	ty 🗌 🕻	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOu Content
1506873-001A	S-215383-GP1-20	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		6/19/2015	5 days	
			SW6020 (CAM 17)					5 days	
			SW8260B (5 OXYS & BTEX)					5 days	
1506873-002A	S-215383-GP2-16	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		6/19/2015	5 days	
			SW6020 (CAM 17)					5 days	
			SW8260B (5 OXYS & BTEX)					5 days	
1506873-003A	W-215383-GP2-	Water	Multi-Range TPH(g,d,mo)	2	2 VOAs w/HCL + 2-aVOAs (multi-range)		6/19/2015 12:15	5 days	Present
1506873-003B	W-215383-GP2-	Water	E200.8 (CAM 17)	1	250mL HDPE w/ HNO3		6/19/2015 12:15	5 days	Present
1506873-003C	W-215383-GP2-	Water	SW8260B (5 OXYS & BTEX)	2	VOA w/ HCl		6/19/2015 12:15	5 days	Present

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

AND A			ue le	- 11				.1:	1	5	0	4	2	57)				C	НА		10)F	C		TC		Y	RF	C	C.	Б	-	
	1534 W vww.mco Telepho	illow P campt one: (8	ass Rd. Dell.con 77) 252	еII / Pit n / т 2-926	A tsbu mair 52 / F	ng, (n@m =ax:	CA 9 00000 (925	456 amp 5) 25	5-17 bell. 2-92	11, 01 .con 269	n m	С	•			TL Geo Eff	RN Tra Tra	AR cker l at Sar	OUN EDF nple	ID T	IME PDF uiring	: RI	JSH [EDD flag		I DA Writ UST	Y C e On Clea) 2 (DW in Uj	DAY	EQ EQ	3 D. 9uIS roject	AY [Clair	5 DA 10 D/ n #	ч) чу [
Report To: Cindy Dittmar Bill To: Faith Fisher								-						-				Ana	lysis	Req	uest	:												
Company: Bonk	owski & A	ssociat	es, Inc.,	6400) Hol	lis St	treet	, Ste	4, E	mer	yvill	le 94	4608	8																				
Tele: (510) 450 Project #: E215 Project Location:	-0770 x 13 5382 Pacifica.	CA.	-Mail: <u>(</u>	Cindy	P	onko rojec urch:	wski et Na ase (i.com me:I Drde	<u>1;</u> m RMC r#E2	sb@ C Pa 2153	bon cific 82-0	ikov a)1	vski	.con	n	115) MTBE	15	(1664 / 5520	s (418.1)	des)	rs / Congener		bicides)		()	PNAs)	**	**		ved metals	000			
Sampler Signatur	re: A	JAK		_												21/80	TPH	rease	rbon	estici	roclo	icides	1 Her	OCs)	VOCs	AHs /	020)*	120)*1		lissoly	à			
SAMPLING MATRIX METH PRESE							SERV)D VED	as (80	\$ (& G	droca	(CLP	3's ; A	Pesti	idie C	60 (V	70 (S'	10 (P/	0.8/6	.8 / 6(***(for I	2										
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTEX & TPH as Ga	TPH as Diesel (8015	Total Petroleum Oil	Total Petroleum Hy	EPA 505/ 608 / 8081	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP	EPA 515/ 8151 (Ac	EPA 524.2 / 624 / 82	EPA 525.2 / 625 / 82	EPA 8270 SIM / 831	CAM 17 Metals (200	LUFT 5 Metals (200	Metals (200.8 / 6020)	Lab to Filter sample analysis	BTEX \$5 ory	1		
S-215383-GP1-20	GP-1	6-19-	-	1					x								X							-		-	X		-	-	X	-	-	-
S-215383-GP1-	GP-1	1		1					x	_			-				-	[_				-		-	-	\leq	-		-
S-215383-GP2-/1	GP-2			1					x								X					-					X		-		X		-	-
5-215383-GP2-	GP-2			-1-		-	-		x	_		-	-		_	-		-	_			_	-		-		_		-	-	_	-		
W-215383-GP1-	GP-1			5	x							`	X	X	X		X							_		_	X	_	_		×	- 1	-	
W-215383-GP2-	GP-2		12:15	5	x								X	×	X		X										X				×			
									_	_		_																						1
								-	-			-	+				-				-											-1		-
*MAI clients MUST discli- iandling by MAI staff. N ** If metals are requested Relinquished By:	ed for water s	amples an Date: 6/(9/1 Date: -/9-1	micals kno immediate nd the wate Time: 5 4:40 Time: 5 60	er type	be prosurcho	specificand and a specificand	n their nd the fied or Sy:	n the c	itted s t is sub chain c	ampl of cus	to full tody.	then	entra I Ilabi MAI	will de IC Ge Hi Di AI PF	elault CE/t° OOD EAD ECH PPRO RESH	may c m suff to m SPA LOR DPRI ERVE	ered. etals D NDIT CE A INA ATE	Imme Than by E20 TION ABSE TED CON N LAI	olate k you 00.8. NT IN LA NTAIN 3	harm for yo 	or ser ur unc	lous fu lersta	nding	ealth and f	enda or allo	ngern wing (nent a us to v	MEN	sult of ately. TS:	brlef,	glove	d, ope	n air,	l samp
Relinquished By: Relinquished By:	-6	Date: -/9-/ Date:	Time:	5	Recei	ived B	iy: Ka iy:	4	1	Jai	uto	~	2	PF	EAD ECH PPRO RESH	SPA LOR OPRI ERVE	CE A INA ATE D IN	ABSE FED CON NLAI VO	NT IN LA TAI! 3 AS	B NERS O&C	G N	IETA 1<2_	LS	оті	IER	I	IAZA	RDO	US:					

Sample Receipt Checklist

Client Name:	Bonkowski & Assoc	iates		Date and Time Received: 6/19/2015 6:16:45 PM					
Project Name:	#E215382; RMC Pa	cifica			LogIn Revi	iewed by:	Erika Santos		
WorkOrder №:	1506873	Matrix: Soil/Water			Carrier:	Bernie Cummir	ns (MAI Courier)		
		Chain of C	ustody	/ (COC) I	nformation				
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌				
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌				
Date and Time of	collection noted by C	Client on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
		Sample	e Rece	eipt Infor	mation				
Custody seals int	act on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹		
Shipping containe	er/cooler in good cond	dition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No 🗌				
Sample container	rs intact?		Yes	✓	No 🗌				
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌				
		Sample Preservation	on and	Hold Tin	<u>ne (HT) Info</u>	rmation			
All samples recei	ved within holding tim	e?	Yes	✓	No				
Sample/Temp Bla	ank temperature			Temp:	5.6°C				
Water - VOA vial	s have zero headspa	ce / no bubbles?	Yes	✓	No 🗌				
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌				
pH acceptable up	oon receipt (Metal: <2	; 522: <4; 218.7: >8)?	Yes	✓	No 🗌				
Samples Receive	ed on Ice?		Yes	✓	No 🗌				
		(Ісе Туре	e: WE	TICE)				
UCMR3 Samples Total Chlorine t	:: ested and acceptable	e upon receipt for EPA 522?	Yes		No 🗌		NA 🗹		
Free Chlorine to 300.1, 537, 539	ested and acceptable)?	upon receipt for EPA 218.7,	Yes		No 🗌		NA 🗹		

_ __ __ -

* NOTE: If the "No" box is checked, see comments below.

Comments:

_ __ __ __ __

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1506873 A

Report Created for: Bonkowski & Associates

6400 Hollis Street, Suite 4 Emeryville, CA 94608

Project Contact: Project P.O.: Project Name:

Cynthia Dittmar E215382-01 #E215382; RMC Pacifica

Project Received: 06/19/2015

Analytical Report reviewed & approved for release on 06/29/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client:Bonkowski & AssociatesProject:#E215382; RMC Pacifica

WorkOrder: 1506873

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference
e2 diesel range compounds are significant; no recognizable pattern
e7 oil range compounds are significant

Quality Control Qualifiers

- F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.
- F2 LCS recovery for this compound is outside of acceptance limits.

Analytical Report

Client:	Bonkowski & Associates
Project:	#E215382; RMC Pacifica

Date Received: 6/19/15 18:16

Date Prepared: 6/19/15

WorkOrder: 1506873 Extraction Method: SW3510C/3630C Analytical Method: SW8015B Unit: µg/L

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
W-215383-GP2-	1506873-003A	Water	06/19/2015 12:15 GC2A	106935
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	210		100 2	06/29/2015 10:47
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	
C9	89		70-130	06/29/2015 10:47
<u>Analyst(s):</u> TK			Analytical Comments: e7,e2	

Quality Control Report

Client:	Bonkowski & Associates	WorkOrder:	1506873
Date Prepared:	6/29/15	BatchID:	106935
Date Analyzed:	6/29/15	Extraction Method:	SW3510C/3630C
Instrument:	GC2B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	µg/L
Project:	#E215382; RMC Pacifica	Sample ID:	MB/LCS-106935

Q	QC Report for SW8015B w/SG Clean-Up												
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits						
TPH-Diesel (C10-C23)	ND	896	50	1000	-	90	59-151						
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-						
Surrogate Recovery													
C9	460	574		625	74	92	77-130						

McCamp	bell Analytical, I		CHAIN-OF-CUSTODY RECORD Page 1 of 1											1			
Pittsburg, (925) 252	, CA 94565-1701 2-9262		Wo	rkOr	der: 15	506873	Α	C	lientCo	de: B(ONK						
		□WaterTra	x UvriteO	n 🔤 EDF	E	xcel		Fax	✓]Email		HardCo	ору	Third	Party	□ J-fla	ıg
Report to:						Bi	ill to:						Requ	ested TA	. т :	5	days
Cynthia Dittma	ar Associates	Email: c	indy@bonkow			Accou	nts Pay	able	atos			Date	Receive	ed:	06/19/	2015	
6400 Hollis Str	reet, Suite 4	PO: E	215382-01				6400 H	Hollis S	treet, S	uite 4			Date	Add-Or	n:	06/29/	2015
Emeryville, CA (510) 450-0770	A 94608 FAX: (925) 284-3552	ProjectNo: #	E215382; RM	C Pacifica			Emery accour	ville, C nting@	A 9460 bonkov	8 /ski.cor	n		Date	Printed	!:	06/29/	2015
									Re	queste	d Tests	(See leg	end be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1506873-003	W-215383-GP2	-	Water	6/19/2015 12:15		А											

Test Legend:

1	TPH(D)WSG_W	2	3	4	5
6		7	8	9	10
11		12]		

Prepared by: Erika Santos

Add-On Prepared By: Maria Venegas

Comments: TPH(D) w/SG added 6/29/15 Rush TAT.

> NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Ana "When Quality Cou	<u>lytical, Inc.</u> ^{nts} "	Cal, Inc.1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com											
		WORK OR	DER SUMM	ARY										
Client Name:	BONKOWSKI & ASSOCIATES		Wa	ork Order:	1506873									
Project:	#E215382; RMC Pacifica	Client Co	ntact: Cynthia D	ttmar		Date	Received:	6/19/2015						
Comments:	TPH(D) w/SG added 6/29/15 Rush TAT.	Contact's]	Email: cindy@bo	nkowski.com		Date	e Add-On:	6/29/2015						
Lab ID	Client ID Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Content	Hold SubOut						

2

2 VOAs w/HCL + 2-aVOAs

(multi-range)

6/19/2015 12:15

1 day

Present

SW8015B (Diesel w/ S.G. Clean-Up)

Water

1506873-003A

W-215383-GP2-

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

										2	0	4	<u>' c</u>	2	-	-			~				-	-	10						-	-	-	
McCampbell Analytical, Inc.											CHAIN OF CUSTODY RECO																							
	1534 W		ass Pd		ttehu	ra (~^ ~	0154	5.1	701	00.0					TU	RN	ARC	DUN	DTI	ME	: RI	ISHE	7	I DA	ΥΓ	2	DAV		3.0	AV	F	5.D	AV
www.mccampbell.com / main@mccampbell.com																												Ϋ,						
	Telepho	one: (8	377) 252	2-926	52 / F	ax:	(925	5) 25	2-9	269						Geo	Irac	ker E	DF		DF		EDD		Write	e On	(DW	0	ΕQ	Juls		5	10 D	AY
																Eff	luent	Sam	ple	Requ	iring	"J"	flag[UST	Clea	in Up	p Fur	id Pi	rojec	t 🗋	; Clai	m #_	
Report To: Cin	dy Dittma	r			B	II Te	o: Fa	ith I	Fishe	er					-							-		Anal	vsis	Rea	uest				-	3		
Company: Bonk	owski & A	ssociat	tes, Inc.,	640	0 Hol	lis S	treet	, Ste	4, E	Emer	yvill	e 94	1608	;																	Γ	R		-
T. (510) 150	0				-											Е	8	0			ners											010		
roject #: F21	-0770 x 13	E	-Mail: C	Cind	y(a)Be	onko	wski	.con	n; n	nsb(a	bon	kov	vski.	.con	n	MTB	1.1	1552	(I.		onge		3			()				etals		10		
Project Location	Pacifica.	CA.	/	/	- ri Pi	irch	ase (me:	r#F	2153	182_0	a 1			-	15) /	P	1664	(418	les)	s/C		bicid			NAS	*	*		ed m	B	Ŧ		
Sampler Signatu	re: A	TAL	F			ii cii	use c	mue	- The	-100	02-0	-				1/80	PH	ase (bons	sticio	oclor	ides)	Herl	(Cs)	OCs)	Hs / I	20)**	**(0)		ssolv	3	P		
		SAM	PLING			MATRIX METHOD PRESERVE)D VED	as (802	10 (& Gr	drocar	(CI Pe	3's ; Ar	Pestic	idic CI	60 (VO	70 (SV	10 (PA	0.8 / 60	.8 / 60	***(for Di	1	lel			
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO3	Other	BTEX & TPH as G	TPH as Diesel (8015	Total Petroleum Oil E/B&F)	Total Petroleum Hy	EPA 505/ 608 / 8081	EPA 608 / 8082 PCB	EPA 507 / 8141 (NI	EPA 515 / 8151 (Ac	EPA 524.2 / 624 / 82	EPA 525.2 / 625 / 82	EPA 8270 SIM / 83	CAM 17 Metals (20	LUFT 5 Metals (200	Metals (200.8 / 6020	Lab to Filter sample analysis	STEX \$5 oxy	SCIEVac		
S-215383-GP1-20	GP-1	6-19-	-	1					x	-		+	+		-	-	X			-				-	-	-	\times				X	-		-
S-215383-GP1-	GP-1	-		1					x				1				-		-		-	-		_	_	_			_	-				-
S-215383-GP2-/1	GP-2			1					x								X	-	-	-						-	X				V	-13-41		-
S-215383-GP2-	GP-2			+	-		-	_	x		_	-	-	-	-	_		_	_						-	-					\square	-		-
V-215383-GP1-	GP-1			5	x			_	_			1	X	X	X		X										V	_		-	X	-		-
W-215383-GP2-	GP-2		12:15	5	x							1	X	X	X		\heartsuit									-	$\widehat{\mathbf{X}}$				$\langle \rangle$	8	-	
												1	T		1		\sim		-												\sim	ex a		-
							1.20																		1		-			1				-
																										1								
									1																									
													_							-													and the second s	

Page 7 of 7

Attachment F - Surface Layout Figures for Site 1A, Site 2B, and Site 3B

Last Saved By: cto 7-07-15 12:21pn

